Cosmogenic ^{10}Be dating of the Salpausselkä I Moraine in southwestern Finland

Vincent R. Rinterknechta,*, Peter U. Clarka, Grant M. Raisbeckb, Françoise Yioob, Edward J. Brooka, Silvio Tschudic,1, Juha P. Lunkkad

aDepartment of Geosciences, Oregon State University, 104 Wilkinson Hall, Corvallis, OR 97331-5506, USA

bCentre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3/CNRS, Bât. 104 et 108, 91405 Orsay Campus, France

cInstitute of Geology, University of Berne, 3012 Berne, Switzerland

dInstitute of Geosciences, University of Oulu, P.O. Box 3000, Linnanmaa 90014, Finland

Received 30 October 2003; accepted 25 June 2004

Abstract

We determined in situ cosmogenic ^{10}Be ages for nine boulders sampled on the Salpausselkä I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from $10.9^{+1.0}_{-1.0}$ to $13.5^{+1.2}_{-1.2}^{10}\text{Be} \text{ka}$, with an error-weighted mean age of $12.4^{+0.7}_{-0.7}^{10}\text{Be} \text{ka}$. Our results confirm four previous ^{10}Be ages obtained 40 km northeast of our sample location. The combined data ($n=13$) indicate that retreat from the Ss I Moraine occurred at $12.5^{+0.7}_{-0.7}^{10}\text{Be} \text{ka}$, in excellent agreement with an age of 12.1ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The Ss (Salpausselkä) Moraine complex in southern Finland, a succession of three parallel ridges, Ss I, Ss II, and Ss III (Fig. 1), formed during the last recession of the southern margin of the Scandinavian Ice Sheet (SIS). Of these three ridges, Ss I and Ss II are the best-expressed end moraines in the Finnish landscape (Rainio et al., 1995). The two ridges (Ss I and Ss II) are thought to be contemporaneous with the three Baltic Ice Lake (BIL) levels (Donner, 1969, 1978; Glückert, 1995), termed B I, B II, and B III. The moraine complex primarily comprises glacio fluvioglacial and glacio lacustrine deposits related to ice-margin contact with the various BIL water levels (Björck, 1995; Donner, 1995).

The existing chronology of the Ss Moraines is based largely on varve counting and biostratigraphical evidence supported by radiocarbon ages. Varve chronologies have been continuously revised (Sauramo, 1958; Niemelä, 1971; Cato, 1987; Stromberg, 1990; Björck et al., 1996; Wohlfarth et al., 1997), and errors of up to a thousand years were found in the reference Swedish varve chronology used in the correlation with the floating Finnish varve chronology (Andrén et al., 1999). A recent study by Saarnisto and Saarinen (2001) attempted to define, independently from the Swedish and Finnish varve chronologies, the age of Ss I and Ss II end moraines. Based on varve counts, paleomagnetic measurements and ^{14}C accelerator mass spectrometry (AMS) dating results obtained from series of lake sediment cores from Lake Onega and their correlation with the Finnish varve chronology, Saarnisto and Saarinen (2001) concluded that Ss I and Ss II...
were deposited between 12,250 and 11,590 varve years ago, or coeval with the Younger Dryas (YD) cold event. The 660 varve-year bracket for the moraines’ deposition agrees with the 600 varve-year bracket as defined by Sauramo (1929) according to his original floating Finnish varve chronology. Sauramo also estimated that Ss I deposition took 217 varve-years and that Ss II deposition took 183 varve-years, with about 200 varve-years for the SIS margin to retreat ca 40 km from the Ss I position to the Ss II.

Tschudi et al. (2000, 2001) applied surface exposure dating (SED) to four boulders sampled from the Ss I Moraine. They obtained error-weighted mean ages of $11.6 \pm 0.5 \text{ } ^{10}\text{Be} \text{ ka}$ (Tschudi et al., 2000), and $11.9 \pm 0.8 \text{ } ^{26}\text{Al} \text{ ka}$ (Tschudi et al., 2001), thus supporting a YD age for the moraine. Given the large uncertainties on the ages, however, a post-YD age cannot be ruled out. Here, we present nine new ^{10}Be exposure ages that directly date the well-preserved Ss I Moraine in southwestern Finland. Our data, combined with the four ^{10}Be ages from Tschudi et al. (2000), confirm that the Ss I was deposited during the YD cold event.

2. The Ss I end moraine and the sampling site

We sampled boulders on the western arc of Ss I (Fig. 1), which was deposited in front of the Baltic Sea lobe margin of the SIS (Punkari, 1980). The end moraine extends from Vesala just west of Lahti to Hanko on the southwestern coast of Finland, from which it can be traced several tens of kilometers further to the west on the Baltic seafloor. In this area, the Ss I ridge is composed mainly of glaciofluvial deltas and subaquatic fan deltas that were deposited next to the ice margin into the BIL. (Sauramo, 1958; Donner, 1969, 1978; Fyfe, 1990). Although the water level history of the Baltic Ice Lake adjacent to the SIS ice margin is relatively well established (Sauramo, 1958; Donner, 1969, 1978), the water level history of BIL has been and still remains controversial (Fyfe, 1990; Saarnisto, 1991; Donner, 1995). Mainly based on elevation data of geomorphologically defined delta levels and paleoshorelines in the area of Ss end moraines, four distinct BIL levels so-called g, B I, B II, and B III have been determined (Donner, 1978). During the time when Ss I was deposited, the highest BIL level stood at B I level while B II and B III levels represent BIL water levels formed when ice front retreated from the Ss I further northwest in the area between Ss I and Ss II. Due to the isostatic uplift, the elevations of the highest B I level in the western arc of Ss I range from 157 m in Lahti area to 150 m level at Hikiä (Donner, 1978).

The Ss I moraine ridge in the sample area forms the Hyvinkää plateau, an almost continuous plateau ~40 km long and up to 2 km wide. The samples obtained southeast of Hikiä are located on the Ss I ridge at around 140 m above present sea level. In that area a feeding esker from the northwest brought material to the ice margin beyond which a glaciofluvial delta was formed. The surface of the Ss I ridge at this site is...
occupied with numerous kettle holes above 150 m. From this level a few meltwater channels reach the 143–145 m-level. With respect to the SED methodology it is important to consider whether the erratic boulders sampled were submerged by the BIL, since submersion would reduce the 10Be production rate. As already described by Ramsay (1922), Sauramo (1958), and Donner (1969, 1978) the highest shore line (i.e. B I level at Hikiä) was placed at 150 m. This elevation is largely important to consider whether the erratic boulders at the 140 m level were deposited in very shallow water as the Hikiä delta was formed and therefore can be used to determine the age of Ss I.

3. Methodology

We sampled nine granitic boulders within 300 m2 on top of the moraine ridge. Beryllium (Be) was extracted from quartz following a modified version of the procedure given in Kohl and Nishizumi (1992) and Licciardi (2000). The non-magnetic sample fraction (grain size between 0.25 and 0.71 mm) is first boiled in pyrophosphoric acid to dissolve most of the aluminosilicates. The grain size fraction is then leached repeatedly with solutions of HNO$_3$ and HF until satisfactory quartz purity is reached. A reference 0.250 mg 9Be spike is added to each sample. We used anion exchange, cation exchange, and selective precipitation techniques to isolate progressively the Be. 10Be/9Be ratios were measured by accelerator mass spectrometry (AMS) at the Tandetron facility, Gif-sur-Yvette, France (Raisbeck et al., 1994), relative to the National Institute of Standards and Technology (NIST) standard (SRM 4325).

Converting 10Be concentrations to exposure ages requires the use of an effective 10Be production rate. We adopt here a value of 5.1 atoms/g/yr (Stone, 2000). This production rate, effective for sea level (1013.25 hPa) and high latitudes (>60°), was scaled to the “effective” elevation and geographic latitude of each sample using Stone’s factors (2000). Since there is still no consensus regarding these parameters, or their uncertainties, we choose here to report our ages as 10Be ages (Gosse et al., 1995a), somewhat analogous to uncalibrated 14C ages. At some later time, when better information becomes available on the production rate, these 10Be ages can be calibrated to calendar ages.

We do not apply a correction for a potential variability of the paleomagnetic field intensity. The relative 10Be production rate record, derived from the 10Be deposition rate (Frank et al., 1997), shows a significant decrease in the production rate from 30 to 10 ka. However, Masarik et al. (2001) argued that the correction is less than a few percent for samples located above ~35°. All our samples are located at ~61° N, which implies a correction of less than 1% for the production rate.

We thus consider below only sample or site specific uncertainties: topographic shielding, snow cover, sample thickness, erosion, and elevation variation linked to glacio-isostatic rebound and glacio-eustatic changes during the last deglaciation. Shielding by surrounding relief is excluded since the Ss I Moraine defines the highest elevation in the region. Our samples come from the top of boulders that are >1 m tall. We assume that any snow would have blown off rapidly after storms and thus do not correct for snow cover. We used the model of Ivy-Ochs (1996) to correct the production rate for sample thickness. Our corrections are slightly over-estimated compared to numerical simulation results reported by Masarik and Reedy (1995). We corrected the production rate for as much as 3%, whereas the simulation predicts no production rate correction up to the first 12 g/cm2 (about 4.4 cm).

Most of the samples display either rough surfaces with emergent resistant quartz grains or surfaces that retain polish, indicating little to no erosion. The surface of sample FIN-1 appears more highly weathered and could have experienced greater erosion (i.e. slab erosion), but this is not supported by our sample analysis, as the age is not significantly younger than the other results (Table 1). To estimate the possible effect of erosion on surface exposure ages, we assumed an erosion rate of 1.3 mm/ka estimated by Gosse et al. (1995b) for granite in the western US. Introducing this erosion rate would increase the exposure ages by 1.2–1.5% and increase the error-weighted mean moraine age by 1.3%. We choose to report the exposure ages without including the erosion parameter. Tschudi et al. (2000) adopted a significantly larger erosion rate (5 mm/yr), but for reasons that remain unclear, they obtained correction factors that are both variable and lower (1.2–2.6%) than would be calculated using our methodology.

Because of the elevation dependence of the 10Be production rate, we must account for the elevation variation through time as a consequence of glacio-isostatic uplift. Southern Finland has been undergoing post-deglacial isostatic rebound, with modern lithosphere responses ranging from 10 mm/yr at the northern tip of the Bothnia Peninsula to 1–2 mm/yr in the Gulf of Finland (Milne et al., 2001). We used the local sea level record of isostatic uplift (Donner, 1968) and far-field records of sea level rise (Bard et al., 1990, 1996; Fleming et al., 1998) (Fig. 2 inset (B)) to derive the integrated change in production rate experienced by our samples as...
concentrations are reported.

calculate the correction factor for sample thickness.

to the materials used to determine the half-life of 10Be (Hofmann et al., 1987), but is offset with the NIST standard by

by spallation and 2.2% by muon capture (Stone, 2000). We used a density of 2.8 g/cm\(^3\) and an attenuation length of

of cosmic rays of 150 g/cm\(^2\) to

number of 10Be events counted, a 5% contribution

These uncertainties include a 1\(\sigma\) systematic error corresponding to the analytical uncertainties as described in the text.

1 Scaling factor (corresponding to “effective” average elevation) accounts for the mode of production of 10Be atoms at the boulder surface: 97.8% by spallation and 2.2% by muon capture (Stone, 2000). We used a density of 2.8 g/cm\(^3\) and an attenuation length of cosmic rays of 150 g/cm\(^2\) to calculate the correction factor for sample thickness.

Surface exposure ages are calculated using a production rate of 5.1 atoms/g/yr at sea level (1013.25 hPa) and latitude >60° scaled for Scandinavian uplift and reduced by 14% to account for different standard used in these measurements compared to that used to make production rate measurements (see text for details).

d Measured at the ETH/PSI tandem facility at ETH-Zürich using the standard S555 (10Be/9Be S555 = 95.5 \times 10^{-12}\), which is a secondary standard to the materials used to determine the half-life of 10Be (Hofmann et al., 1987), but is offset with the NIST standard by ~11%.

e Surface exposure ages are calculated using our method.

We expect the nine boulder surface histories to be similar due to sample proximity, and surface exposure ages should accordingly be similar. Taking into account only the measurement uncertainties, the 10Be ages range from 10.9 \pm 0.8 to 13.5 \pm 1.0 ka (Fig. 2) with a weighted-mean standard deviation of 7.4%, which is what is expected on the basis of our analytical uncertainties (6.9–8.0%). This suggests that the random uncertainties are dominated by the analytical uncertainties rather than the geological ones. In the absence of obvious geological uncertainties, except those possible ones linked to erosion, we calculate an error-weighted mean age of the nine exposure ages of 12.4 \pm 0.7 10Be ka, including the estimated 5% systematic uncertainty introduced by the site specific uplift correction.

5. Discussion and conclusion

Tschudi et al. (2000) calculated a mean moraine age of 11.6 \pm 0.5 10Be ka from four samples, accounting for a 5 mm/kyr erosion factor. Within errors, this surface exposure age agrees with our moraine age (12.4 \pm 0.7 10Be ka). However, because of differing laboratory protocols adopted to derive exposure ages (i.e. 10Be standard, choice of the production rate, the scaling method, assumed erosion rate), and to incorporate

Table 1 Sample characteristics, \(^{10}\)Be concentrations and calculated surface exposures ages

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Lithology</th>
<th>Boulder height (m)</th>
<th>Thickness (cm)</th>
<th>Altitude (m)</th>
<th>Latitude N (DD)</th>
<th>Longitude E (DD)</th>
<th>(^{10})Be</th>
<th>Scaling factor(^{b})</th>
<th>(^{10})Be age</th>
<th>(^{10})Be age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(^{10})Be</td>
<td></td>
<td>(^{10})Be</td>
<td>(^{10})Be</td>
</tr>
<tr>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>FIN-1</td>
<td>Granite</td>
<td>1.00</td>
<td>3.0</td>
<td>140</td>
<td>60.7308</td>
<td>24.9597</td>
<td>6.22 \pm 0.45</td>
<td>1.12</td>
<td>13.0 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>FIN-2</td>
<td>Granite</td>
<td>1.40</td>
<td>1.7</td>
<td>140</td>
<td>60.7308</td>
<td>24.9997</td>
<td>5.73 \pm 0.46</td>
<td>1.12</td>
<td>11.4 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>FIN-3</td>
<td>Granite</td>
<td>2.00</td>
<td>2.0</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>5.26 \pm 0.39</td>
<td>1.12</td>
<td>10.9 \pm 1.0</td>
<td></td>
</tr>
<tr>
<td>FIN-4</td>
<td>Granite</td>
<td>1.00</td>
<td>2.0</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>5.80 \pm 0.43</td>
<td>1.12</td>
<td>12.0 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>FIN-5</td>
<td>Granite</td>
<td>1.20</td>
<td>3.4</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>6.31 \pm 0.44</td>
<td>1.12</td>
<td>13.2 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>FIN-6</td>
<td>Granite</td>
<td>1.35</td>
<td>2.6</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>5.68 \pm 0.41</td>
<td>1.12</td>
<td>11.8 \pm 1.0</td>
<td></td>
</tr>
<tr>
<td>FIN-7</td>
<td>Granite</td>
<td>1.50</td>
<td>2.5</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>6.49 \pm 0.46</td>
<td>1.12</td>
<td>13.5 \pm 1.2</td>
<td></td>
</tr>
<tr>
<td>FIN-8</td>
<td>Granite</td>
<td>1.40</td>
<td>2.0</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>6.54 \pm 0.45</td>
<td>1.12</td>
<td>13.5 \pm 1.2</td>
<td></td>
</tr>
<tr>
<td>FIN-9</td>
<td>Granite</td>
<td>2.70</td>
<td>2.0</td>
<td>140</td>
<td>60.7308</td>
<td>24.9619</td>
<td>6.33 \pm 0.45</td>
<td>1.12</td>
<td>13.1 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>Tschudi et al. (2000)</td>
<td></td>
</tr>
<tr>
<td>Sal 1</td>
<td>Granite</td>
<td>3.00</td>
<td>4.0</td>
<td>160</td>
<td>61.0000</td>
<td>25.3900</td>
<td>7.50 \pm 0.50</td>
<td>1.16</td>
<td>13.3 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>Sal 3</td>
<td>Granite</td>
<td>0.50</td>
<td>3.0</td>
<td>160</td>
<td>61.0000</td>
<td>25.3900</td>
<td>7.07 \pm 0.48</td>
<td>1.16</td>
<td>12.4 \pm 1.0</td>
<td></td>
</tr>
<tr>
<td>Sal 4b</td>
<td>Quartz</td>
<td>1.50</td>
<td>2.0</td>
<td>160</td>
<td>61.0000</td>
<td>25.4000</td>
<td>6.26 \pm 0.54</td>
<td>1.16</td>
<td>12.6 \pm 1.1</td>
<td></td>
</tr>
<tr>
<td>Sal 5</td>
<td>Granite</td>
<td>3.50</td>
<td>2.0</td>
<td>160</td>
<td>61.0000</td>
<td>25.4000</td>
<td>7.26 \pm 0.54</td>
<td>1.16</td>
<td>12.6 \pm 1.1</td>
<td></td>
</tr>
</tbody>
</table>

\(a\) Measured using the NIST standard ratio of 10Be to 9Be and corrected for the mean blank value of 6.4 \pm 3.5 \times 10^4\ atoms 10Be. All 10Be concentrations are reported \(\pm\) 1\(\sigma\) error corresponding to the analytical uncertainties as described in the text.

\(b\) Scaling factor (corresponding to “effective” average elevation) accounts for the mode of production of 10Be atoms at the boulder surface: 97.8% by spallation and 2.2% by muon capture (Stone, 2000). We used a density of 2.8 g/cm\(^3\) and an attenuation length of cosmic rays of 150 g/cm\(^2\) to calculate the correction factor for sample thickness.

\(c\) Surface exposure ages are calculated using our method.

\(d\) Surface exposure ages are calculated using a production rate of 5.1 atoms/g/yr at sea level (1013.25 hPa) and latitude >60° to account for different standard used in these measurements compared to that used to make production rate measurements (see text for details).

\(e\) Measured at the ETH/PSI tandem facility at ETH-Zürich using the standard S555 (10Be/9Be S555 = 95.5 \times 10^{-12}\), which is a secondary standard to the materials used to determine the half-life of 10Be (Hofmann et al., 1987), but is offset with the NIST standard by ~11%.

4. Results

We expect the nine boulder surface histories to be similar due to sample proximity, and surface exposure
uncertainties (for example, Tschudi et al. do not distinguish between random and systematic uncertainties) direct comparisons of results from different laboratories requires some standardization of data (Tuniz et al., 1998). Accordingly, we have recalculated the four exposure ages determined by Tschudi et al. (2000) following the same calculations as described in the above methodology section (assuming no erosion and taking the boulders uplift history into account) to derive an error-weighted mean age of $12.6 \pm 0.9 \, ^{10}\text{Be} \, \text{ka}$.

As the four boulders were also sampled on the Vesala plateau 40 km from our sample site, and thus essentially on the same exact moraine surface, we add the Tschudi et al. (2000) results to our data to calculate an error-weighted mean moraine age of $12.5 \pm 0.7 \, ^{10}\text{Be} \, \text{ka}$ ($n = 13$).

The varve chronology established by Saarnisto and Saarinen (2001) places the beginning of Ss I formation at 12.3 varve ka. According to Sauramo’s (1929) varve counting, moraine formation occurred over 217 years,
indicating that the ice lobe would have retreated from its marginal position around 12.1 varve ka. This is in good agreement with our result of 12.5 ± 0.7 10Be ka for the age of abandonment of the Ss I moraine. Indeed, the excellent agreement between the varve age and our raw 10Be age could be taken as an indication of the validity of both ages, and thus support the assumptions used in making our exposure age calculation, including the production rate estimate. However, one cannot also exclude the possibility of compensating errors.

Counting annual ice layers places the onset of the YD Stadial at 12.9 ± 0.2 ka in the GISP 2 ice core (Alley et al., 1993), and 12.7 ± 0.1 ka in the GRIP ice core (Johnsen et al., 1992). Rainio (1995) suggested that the SIS retreated at least 80 km north of what is now Ss I before it readvanced. Assuming that the readvance of the SIS occurred in response to YD cooling, these relations suggest that the southern margin of the SIS advanced ~80 km in less than 700 years, indicating a rate of advance of ~110 m/yr (Ehlers, 1990).

Both our new 10Be ages and the varve chronology suggest that the southern SIS margin subsequently began to retreat to the Ss II Moraine during the YD, which ended at 11.5 ± 0.2 ka (Alley et al., 1993). If a climatic response, this may indicate a switch to negative mass balance through a moisture control. Alternatively, this retreat may indicate a dynamic response associated with drawdown of ice through the Gulf of Bothnia.

Acknowledgements

This work was supported by the US National Science Foundation Grants ATM 9907836 to P.U. Clark and ATM 0000652 to E.J. Brook. Tandetron operation is supported by Centre National de la Recherche Scientifique (Institut National de Physique Nucléaire et de Physique de Particules, and Institut National des Sciences de l’Univers). We thank C. Gozart and L. Bjerkelund at the Washington State University for helping us in the never-ending sample preparation and A. Ungerer from the College of Oceanic and Atmospheric Sciences at the Oregon State University for his assistance with inductively coupled plasma measurements. Discussions with D. Vacco and R. Holman improved the production rate correction for the uplift history. We thank Bill Phillips and Lewis Owen for helpful comments on the manuscript. L-DEO contribution 6641.

References

Cato, I., 1987. On the definite connection of the Swedish time scale with the present. Sveriges Geologiska Undersökning Ca 68, 55.

