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ABSTRACT

A model is proposed for predicting the spatial variation in colluvial soil depth, the results of which are used in a sepa-
rate model to examine the effects of root strength and vertically varying saturated conductivity on slope stability. The
soil depth model solves for the mass balance between soil production from underlying bedrock and the divergence of
diffusive soil transport. This model is applied using high-resolution digital elevation data of a well-studied site in north-
ern California and the evolving soil depth is solved using a finite difference model under varying initial conditions. The
field data support an exponential decline of soil production with increasing soil depth and a diffusivity of about 50cm®/
yr. The predicted pattern of thick and thin colluvium corresponds well with field observations. Soil thickness on ridges
rapidly obtain an equilibrium depth, which suggests that detailed field observations relating soil depth to local topo-
graphic curvature could further test this model. Bedrock emerges where the curvature causes divergent transport to
exceed the soil production rate, hence the spatial pattern of bedrock outcrops places constraints on the production law.

The infinite slope stability model uses the predicted soil depth to estimate the effects of root cohesion and vertically
varying saturated conductivity. Low cohesion soils overlying low conductivity bedrock are shown to be least stable. The
model may be most useful in analyses of slope instability associated with vegetation changes from either land use or
climate change, although practical applications may be limited by the need to assign values to several spatially varying
parameters. Although both the soil depth and slope stability models offer local mechanistic predictions that can be
applied to large areas, representation of the finest scale valleys in the digital terrain model significantly influences local
model predictions. This argues for preserving fine-scale topographic detail and using relatively fine grid sizes even in

analyses of large catchments.
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INTRODUCTION

In steep, soil-mantled landscapes, shallow landsliding of the soil can generate debris flows which scour low-
order channels, deposite large quantities of sediment in higher order channels and, in urbanized settings,
destroy property and kill people (e.g. Costa and Wieczorek, 1987; Selby, 1993). The practical significance
of shallow landsliding has motivated many different kinds of approaches to mapping the potential hazard
in a watershed (see review in Montgomery and Dietrich, 1994). One approach that seems particularly
promising is to use digital elevation data and simple coupled hydrological and slope stability models to
delineate those areas most prone to instability (Okimura and Kawatani, 1987; Dietrich et al., 1992;

1993; Wu, 1993; Montgomery and Dietrich, 1994).
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Soil thickness strongly affects relative slope stability, yet the spatial variation in soil thickness in land-
slide-prone areas is rarely estimated (two exceptions are Okimura, 1989; DeRose e al., 1991; 1993). Soils
are typically thin to absent on sharply defined ridges and thickest in unchannelled valleys. Vegetation pro-
vides a root strength to the soil, and on steep lands with organic-rich, low-density soils, this root strength
may dominate or provide a significant portion of the total strength of the material. Vegetation can root
through thin soils into the underlying bedrock typically found on ridges and side slopes and provide con-
siderable strength. In thick soils typical of unchannelled valleys, slope instability is favoured because failure
planes can form below the rooting depth and the topography forces subsurface flow convergence and ele-
vated pore pressures (e.g. Dietrich and Dunne, 1978; Reneau, 1988; Crozier et al., 1990).

Land-use and climate change modify vegetation. The local soil depth must be known to understand the
influence of changes in vegetation on slope stability, yet such information is rarely available and it is
impractical to measure for even a modest sized watershed.

Furthermore, soil thickness affects the availability of soil moisure, the relative role of subsurface to over-
land flow (e.g. Dunne, 1978) and, therefore, the general hydrological response of a landscape. It introduces
a spatially organized influence on runoff processes through its dependence on topography, yet a lack of
detailed field information inhibits incorporating these effects in models. In addition, by breaking down bed-
rock into smaller erodible sized particles, soil generation strongly influences the rate of landscape evolution
(e.g. Kirkby, 1985; Anderson and Humphrey, 1989). On a practical level, land management decisions are
ultimately made on the local level and it would be desirable to account for the local influence of soil thick-
ness on slope stability. Hence there would be considerable value (for these and other problems) in a model
that predicts the general spatial distribution of soil depth across a landscape.

Two kinds of models have been proposed to predict the spatial pattern of soil characteristics. Process-
based models are few and only one appears to have attempted to relate a theoretical prediction with field
observations. Ahnert (1970) described the results of a computer simulation which solves for the local ‘waste
cover’ thickness as a mass balance between waste production and slope-dependent transport removal. He
estimated waste cover thickness variation along several hillslope profiles in North Carolina and found that
he could explain with his model the variation in cover thickness with local slope and distance from the
divide. The most thorough model is that proposed by Kirkby (1985). He developed a model for the evolu-
tion of regolith-mantle slopes that determines the spatial distribution of a ‘soil deficit’, or the amount of
original parent material remaining on a hillslope, as influenced by rock type and climate. This model,
although instructive about the influence of weathering on slope evolution, requires a large amount of hy-
drological, mechanical and geochemical information to be applied to a specific site. Kirkby also only con-
sidered the developed of a soil along a hillslope profile.

Numerous empirical models for estimating the spatial variation in soil attributes have been proposed,
and Moore et al. (1993) offer an excellent brief review of these studies. Moore et al. (1993) and Gessler
et al. (in press) also propose a new method using correlations between observed properties and analysis
of digital terrain. Such an approach enables high spatial resolution and estimation of many soil attributes
other than depth, but requires a large amount of field data. Also, because of its empirical nature it can only
apply to areas where it has been developed. Such models, although very useful, have only limited value in
providing a mechanistic explanation for the spatial distribution of soil thickness.

Here we present a simple model for predicting the spatial variation in colluvial soil thickness and then use
this model in a coupled hydrological and slope stability model to examine the influence of root strength on
the pattern of slope instability. Our soil thickness model is similar to that described by Ahnert (1970), but it
is developed in such a way that the parameters can be estimated from field observations and it is applied to
a real three-dimensional landscape rather than a hillslope profile. Where the topography is reasonably well
capature in the digital elevation data, our model successfully predicts the extent of thick colluvial deposits
in unchannelled valleys and identifies areas of significant bedrock outcrop. The model also suggests that soil
depth quickly tends to a constant value on divergent slopes, leading to a testable hypothesis about the
relationship between topographic curvature and soil depth. Modelled slope stability is strongly influenced
by the root cohesion, with slope instability most likely in the steep unchannelled valleys with thick colluvial
deposits, a result in agreement with field observations. In contrast with river systems which can drain very
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large areas, hillslopes are of finite extent, hence it is possible to apply the soil depth and slope stability
models to local areas in large watersheds using fine scale grids.,
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THEORY FOR COLLUVIAL SOIL THICKNESS

Here we briefly describe a model for soil depth and show examples of its application to a site where we have
mapped the pattern of thick colluvium and located shallow landslide scars. A more detailed development of
the soil model can be found elsewhere (Dietrich ef al. in prep.). The term ‘soil’ is used here to mean the
surficial material mantling the underlying weathered or fresh bedrock and lacking relict rock structure.
In thin soils it is roughly equivalent to the solum (the A and B horizons) and in areas of thick accumula-
tions due to mass wasting it is equivalent to colluvium. As long as there is a gradient to the topography,
however, all soils in this model are colluvial rather than residual.

This model is thought to be most applicable to unglaciated landscapes underlain by mechanically strong
bedrock lacking a well-developed saprolite. We do not consider the role of chemical and physical break-
down of the underlying rock and its influence on soil generation in this model. Although such processes
are certainly important, for simplicity we have chosen not to treat them explicitly in the model. Instead,
we use a general soil production function proposed by others for which we have some field evidence.
The soil production function we use may represent the role of biogenic processes in mechanically disrupt-
ing the underlying bedrock and converting it to a mobile soil layer. In the following we emphasize the role
of such processes, but the general model does not specifically require only biogenic processes to occur.

On many hilly landscapes, the loose surface soil appears to be largely derived from the underlying bed-
rock by biogenic processes that dig into the bedrock and force pieces of it into the soil layer or onto the
ground surface. In our experience in such landscapes, the transition from the soif to the underlying bed-
rock is usually abrupt. The most obvious example of this mixing of bedrock into the soil occurs by tree
throw. We have observed in many environments, including in the Pacific Northwest, Puerto Rico and
Australia, clear instances where the uplifted root wad of the fallen tree still contained bedrock with recog-
nizable structures such as bedding. As the roots decay the bedrock will break into pieces, tumble to the
ground and become part of the mobile soil layer. Other obvious agents of mixing of bedrock into the
soil include the burrowing effects of animals and insects.

When these biogenic processes operate on an inclined surface, the presence of a downslope component of
gravity presumably causes a net transport downslope at a rate roughly proportional to the gradient. Soil
thickness is then the result of the dynamic balance between the downslope changes in the rate of transport
and the production rate of soil (Figure 1). If solution processes play a minor part in mass transport, the
conservation of mass equation for soil thickness, 4, can be written as

oh e
=g — —_ X7 -p.a |
Ps o1 Pr o1 V - pds (1

where p, and p, are the bulk density of soil and rock, respectively, e is the elevation of the bedrock-soil
interface and g, is the soil transport vector. The first term is the change in soil thickness with time, ¢.
The second term is the rate of conversion of bedrock to soil due to lowering of the bedrock—soil interface
and the last term is the divergence of soil transport.

To solve Equation (1) for the spatial variation in soil depth, we need a transport law for ¢, and a soil
production law. The simplest approach is to consider the case where hillslope processes can be represented
by a purely slope-dependent transport law

g, = —KVz (2)

in which K is a parameter equivalent to a diffusion coefficient with units of L?/1 and is assumed to be iso-
tropic. Such a law has its origins in the works by Davis (1892) and Gilbert (1909), has been used in ana-
lytical and numerical models of landscape evolution (i.e. Culling, 1963; Kirkby, 1971; Koons, 1989;
Anderson and Humpbhrey, 1989; Howard, 1994; see review in Fernandes and Dietrich, in prep.), and has
some field evidence to support the simple linear dependence on gradient (McKean et al., 1993). The
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Figure 1. Balance of soil transport and production which controls Jocal colluvial soil depth. In our study area, mass transport down-

slope, ¢, of the entire active layer of the soil is caused primarily by biogenic processes acting on an inclined surface. The equation in the

figure is Equation (1) in the text and all terms are defined there and shown graphically in the figure. The shaded area between the base

of the soil at elevation e and the broken line is the amount of bedrock that would be converted to soil over some specified time interval.
Note that z =e+ h

diffusion coefficient in Equation (2) is not an arbitrary constant, but rather can be estimated by a variety of
field methods, but when used in modelling its value is clearly scale-dependent, increasing in magnitude from
hillslopes to mountain ranges (see review in Fernandes and Dietrich, in prep.). Equation (2) does not apply
to runoff-driven transport responsible for valley evolution, nor is it apparently applicable to landsliding. It
could be argued that the gradient term should be given by the sine of the slope (A. Howard, pers. comm.),
but we will not consider that effect here.

The approach we will take is to apply Equation (2) to real landscapes represented by a digital elevation
field in which diffusive transport processes predominate on the ridges and tend to fill the valleys between
short periods of erosion by landsliding and gullying. In our experience such landscape processes typify
(but are not limited to) unglaciated, hilly, mostly soil-mantled landscapes in humid to semi-arid climates
where Horton overland flow is rare or absent and the underlying bedrock is mechanically strong. By ignor-
ing the effects of river incision at the base of slopes and landsliding, we are in effect taking the digital land-
scape as given and solving for what the soil distribution should tend to be for the present topography under
the assumption that landform change is sufficiently slow that soil depth tends to the local steady-state
condition (of either constant depth or constant aggradation). The relatively narrow range of soil depth
on hillslopes and the systematic thickening of soil in unchannelled valleys in our field sites support this
assumption. .

Despite its importance, we known of no field study that defines the production law for an area. Cox
(1980) summarizes various theoretical expressions for this law, all of which are based on the assumption
that the production rate is a function of the thickness of the soil. Since the original suggestion by Gilbert
(1877) it has been assumed that the production rate is zero for soils greater than some depth and that for
shallow soils the production rate increases, perhaps reaching a maximum when the bedrock is exposed or at
some intermediate soil depth (Figure 2). It was the inference that the production rate reaches some maxi-
mum that led (thanks in large measure to Carson and Kirkby, 1972) to the now widely used terms, trans-
port-limited (where there is a soil mantle) and weathering-limited (bedrock at the surface) landscapes.
Ahnert (e.g. 1988) has offered the most specific relationships between weathering rate and ‘cover thick-
ness’, reasoning that mechanical weathering decreases exponentially with cover thickness, but chemical
weathering increases with increasing thickness, leading to a weathering rate. that has a maximum at
some finite cover thickness. An argument can be made that if mechanical disruption by biota plays a major
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Figure 2. Two production functions estimated from field data. The exponential function was fitted to two data points: 0-0042 cm/yr at

30cm and 0 at 150 cm. The other function, represented by a polynomial which gives a peak at about 25cm, was st to a peak closc to

the 30cm value for the exponential, but the intercept value is arbitrarily low and the production was assumed to go to zero at 90cm.
Notc that the production rate is —de/t and that at equilibrium on the ridges this rate is equal to —K(p,/p,)Vz

part in converting in place bedrock to mobile soil, a similar *humped’ production curve may be appropriate.
The frequency of contact and disruption of the colluvium—-bedrock boundary should decrease as the soil
thickens, hence production should tend to decrease with thickening soil. It is reasonable to suspect that
sufficiently thin soil cannot support burrowing animals and that completely exposed bedrock has a lower
rate of conversion to soil than that which is partly buried.

We have explored two general kinds of production laws, one which is a simple exponential decline with
thickening soil, i.e. —8e/8t = Pye™™ (in which P, and m are empirical constants) and one in which the soil
depth is a complex, bell-shaped function of A, with a maximum at some thin soil value (Figure 2). So, in

general (assuming X and p; are spatially constant), we can write for f(h) = —(de/d1)
oh
2 Pr
= = 2L (R 3
KVz 5 o (h) 3)

If the production rate reaches zero with increasing thickness, then valleys which receive convergent sedi-
ment transport will tend to fill and the local production rate will reach zero, leading to

_oh
T o

The deposition rate in valleys is set by the diffusion coefficient and the topographic divergence; the total
amount of soil deposited depends on how long aggradation has occurred since the last evaculation event
(see Reneau, 1988; Reneau et al., 1989; 1990). This result is most applicable to unchannelled valleys.

KV?z 4)
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On divergent slopes, i.e. V2z < 0, if the soil depth reaches a time-independent value, then

KV = =Logip (5)

and if the production rate varies inversely with depth, sharply curved ridges will have the thinnest soils.
Bedrock will appear at the surface, however, where the transport divergence exceeds the production rate

KV > ”-jff(h) (6)

Anderson and Humpbhrey (1989) point out this effect in a more complicated one-dimensional model! which
includes landsliding.

Once bedrock appears, the proposed transport law no longer applies because there is insufficient soil to
satisfy the net soil flux. In our finite difference numerical model, for those elements where the transport rate
from the element exceeds the sum of the soil thickness, the production amount and the upslope influx of
soil, we reduce the transport rate to the total available from these three sources.

THEORY FOR THE INFLUENCE OF SOIL DEPTH ON SHALLOW SLOPE INSTABILITY

In earlier papers we have proposed simple theories for coupled shallow subsurface flow and landsliding of
the soil mantle (i.e. Dietrich et al., 1986; 1992; 1993) which did not explicitly account for the influence of soil
depth, unlike the innovative model proposed by Okimura and Kawatani (1987). Our previous model uses a
steady-state runoff model to define the topographic control on pore pressure distribution and the resultant
spatial pattern of slope instability. Soil cohesion is not included and the angle of internal friction and soil
bulk density have been treated as spatially constant. We have shown that this very simple, one to two para-
meter model fairly accurately delineates those parts of the landscape prone to shallow landsliding (Dietrich
et al., 1993; Montgomery and Dietrich, 1994). The model, however, does not account for the effects of ve-
getation change on slope instability and therefore cannot explicitly examine the effects on vegetation and
slope stability. Also the model uses the assumption that the saturated conductivity is invariant with depth
which is far from the case in natural landscapes. Here we take advantage of our soil model to estimate the
effect of exponentially declining saturated conductivity and varying cohesive strength due to roots on the
pattern of slope instability. An important question we will address is whether this much more complicated
model offers substantial improvements in estimating the location of shallow landsliding.

We use the infinite slope model (e.g. Selby, 1993) which accounts for the strength contributed by roots as
an apparent cohesion, C,,

psghsinfcos 0 = C, + C,,, + (pghcos® § — p,gucos? f)tan ¢ (7)

in which g is gravity, 8 is the hillslope angle, Cy,, is the cohesion of the soil when it is wet, Pw is the density of
water, p; is the soil bulk density (including the mass contribution from soil moisture), u is the pore pressure
and ¢ is the angle of internal friction. The vertical surcharge of vegetation is neglected and short-term
changes in root strength due to land use are not considered here (see Sidle, 1992). This slope stability equa-
tion is linked to the hillslope hydrology through the pore pressure term in which

u=nh-—y, (8)

and y, is the distance below the surface to the water-table. As such Equation (8) only applies if y, <h.
When the water-table is below the bedrock-soil interface, then u is assumed to be zero. The wet soil
bulk density varies from saturated values to moist values, but for simplicity we just use the saturated
values. If Equation (8) is substituted into Equation (7) for the pore pressure term, then the equation can
be solved for the ratio of the distarice below the surface to the water-table, y,, and the soil depth, &

Yw *Ps R G+ Gy o . :

Ak Pw I=n ¢(tan0 hp.g cos? 0)] . O
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Failure will occur even when the water-table is below the bedrock interface when - . ...y o
BRI RS S AN R . : -
A o Ctanfp e ——=— o+ 5= +tang ' ' - (10)
e P hpsg’QOS_ 0 " o c

and land this steep is unconditionally unstable. Slopes with sufficiently low gradient that they will not fail
even when saturated, occurs if

C.+C p.

tanfg ————3 + t 1-= 11

ANOS Gpgoost and’( pw> (n

Field evidence suggests that saturated conductivity declines exponentially through the soil and through
the underlying bedrock, but at different rates (Montgomery, 1991), such that we can write

k=kie™?  forygsh (12)
and
k=kye % fory>h (13)

where k is the saturated conductivity (assumed to be isotropic) at vertical distance y below the surface and
k, is the saturated conductivity at the ground surface and k; is this value when the bedrock values are
projected to the ground surface. The exponents for these equations (7, and n;) account for the decrease
in saturated conductivity normal to the ground surface rather than vertically, and that is why the cosé
is included. Following the approach used previously (Dietrich et al., 1992; 1993, Montgomery and Dietrich,
1994), we solve for the steady-state runoff by subsurface flow parallel to the ground surface (hence given by
the topographic gradient, sin#), by integrating Equations (12) and (13) and multiplying by the assumed
head gradient

00

y=h
qa= U ’ ke %9y cos 6 + J kye™™ %8y cos 9] bsind (14)

v=hoy

in which g is the precipitation minus evapotranspiration which falls on the horizontal surface area, a, and
flows across the unit contour length, b. The depth, Ay, is equal to the soil depth, A, unless the change in slope
(from n, to n,) occurs within the colluvium, which can happen in thick unchannelled valley-fills
(Montgomery, 1991). In this latter case, hy, is equal to 4 up to the depth where it changes and then it is
fixed at that depth value.

Integrating Equation (14) and solving for y,/h, gives

Yw _ 1 qan, —nihgcosd _ kan, ~nyhycos8 15
h = Tmihcosf (k,bsin9+e ok, € (15)

A single equation coupling the slope stability and the hydrological model can then be obtained by setting
Equations (15) and (9) equal, and solving for the ratio of effective rainfall rate to the saturated conductivity
at the surface

q bsind —nBhcos 6 —nyhgcosé k2nl —nshg cos
A2 — <™ 16
ky any (e ¢ * nak) i (19
where
pS l CI’ + CSW )
=1-£&(l-——(tanf - ——= 17
p=1 Pw tan ¢ ( A hpgcos ("

In this dimensionless form Equation (16) can easily be used in a digital terrain model in which topo-
graphic attributes, 8, a and b, can be measured and the differing values of the ratio of effective rainfall
to infiltration rate needed for instability can be mapped. The local soil depth, , is estimated from numeri-
cally solving Equation (3). Nine parameters must be specified to use Equation (16) once the topographic
and soil depth field has been defined: hg, ny, ny, ks, ky, tang, ps, C; and C;. An argument can be made

!
{




390 : W. E. DIETRICH ET AL.

that these parameters should not be single valued, but should be assigned probability distributions (e.g.
review in Mulder, 1991). Because field observations suggest that these parameters probably vary in space
systematically rather than randomly (co-varying, for example, with soil depth), this would require assign-
ing this spatial correlation structure, further complicating the model. For simplicity here we treat these
parameters as spatially constant.

For a given landscape the strength properties contained in B determine the range of slopes susceptible to
instability. The topographic term, bsin 6/a, in Equation (16) shows that for this steady-state model, lower
gradient (but steep enough to fail), strongly convergent (low b/a) areas are least stable. The lower gradient
is favoured because destabilizing pore pressures build up with less rainfall on lower gradient hillslopes.
Intense precipitation much shorter in duration than that necessary for a steady-state response may favour
instead steep side slopes as the least stable (Hsu and Dietrich, in prep.).

Equation (16) also shows that the amount of precipitation necessary for instability varies directly with
the saturated conductivity at the ground surface, k1, and inversely with the rate of decline of the conduc-
tivity in the soil, »;. As in all subsurface flow problems, a meaningful saturated conductivity is difficult to
define from field data, but has a large effect on the result. Because we have used k; to normalize our results,
and because it appears as part of a ratio in the third term on the right-hand side, we do not need to know
the exact value of &, unless we wish to judge the model in terms of whether it requires reasonable amounts
of precipitation. Given that the model is steady state, which rarely, if ever, occurs in most natural storms,
evaluating the precipitation rate required for instability may not be instructive: the primary result is the
relative rating given by Equation (16) in its dimensionless form. Hence small g/k, means least stable
and large g/k, is most stable. One reason, however, to attempt to assign specific values to the hydrological
parameters, ky, k;, ny, ny, is to estimate whether the rainfall associated with a large g/k is so great as to
indicate that the chances of instability are very low. This has obvious practical implications. We explore
this problem in the application section.

Soil depth must be prescribed to estimate the role of cohesion in contributing strength to the soil; the
deeper the soil the less significant the contribution from cohesion. The strong tendency for soils to be
thin on narrow ridges and thick in convergent areas enhances the importance of steep unchannelled valleys
as debris flow source areas (see review in Reneau and Dietrich, 1987b). Not only are unchannelled valleys
typically mantled with a thicker colluvium which reduces the effectivness of root cohesion, but they are less
stable because of the hydrological effects of topographic convergence (Dietrich er af., 1986). Because of the
thicker colluvium in unchannelled valleys these features, when they fail, produce larger, more destructive
debris flows. Hence the coupled soil depth-slope stability model may be particularly useful in identifying
debris flow hazards.

A test of the usefulness of Equation (16) is to apply it with and without a spatially varying soil depth to
determine if, when applied to a real landscape, the range in depth and its spatial distribution has a primary
influence on the location of shallow landsliding. If the topography dominates the location of shallow land-
sliding, then even a simpler model which we have previously used (Dietrich et al., 1992; 1993; Montgomery
and Dietrich, 1994) may be sufficient. This simpler model has the advantage of having only two parameters.

APPLICATION OF MODELS

In using Equations (3) and (16) in a digital terrain model, the first consideration should be whether the
hydrological and erosion processes represented by these models actually occur in the landscape of inter-
est. The soil depth model in the form given in Equation (3) assumes that over the time period sufficient
to influence soil depth, the dominant hillslope transport process can be represented by a slope-dependent
transport law. The slope stability model assumes that shallow subsurface flow parallel to the ground sur-
face dictates the build-up of pore pressures and that instability involves just the weaker colluvial mantle.
Also important is the quality of the digital elevation data. If the grid cells areé large and therefore unable
to portray cither the local slope or the 'unchannelled .valleys accurately, application of Equations (3) and
(16) would seem unwarranted, and a simpler model such as that described in Montgomery and Dietrich
(1994) would be more appropriate. : ‘ A At e
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We use a grid-based rather than a contoti"r‘:-?_l_; model because it is substantially easier to apply these
models and evolve the land surface over large basins. To reduce the grid artifacts, drainage area, slope and
transport are determined in all eight possible dif'éctidns;'Prog'r‘amskavajlgble in' ARC/INFO were used to
grid the original data and to generate figures. Details 6f our finite difference numerical model are given
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Field site

We apply these models to a small watershed in Terinessee Valley; Marin County, California, where we
have approximately 10m resolution digital elevation data, ‘extensive field ‘observations about runoff and
erosion processes, and where we have already tested the simpler, depth-independent slope stability model
(Montgomery and Dietrich, 1989; Montgomery, 1991; Dietrich et al., 1992; 1993; Montgomery and
Dietrich, 1994). The area is mostly underlain by tectonically deformed greywacke. with some greenstone
and chert. Colluvial soils mantle the landscape with thick deposits (several metres) in unchannelled valleys
and thin soils on the ridges giving way to bedrock outcrops. Bedrock also crops out on steep side slopes and
canyon bottoms. Grass and chaparral predominate in these hilly lands. There is clear evidence of biogenic
processes playing a major part in mobilizing fractured bedrock into the shallow soil mantle and in causing
the downslope transport of debris. Debris slide scars involving just the soil mantle are common. In the
following we parameterize the model based on field observations and test the utility in explaining observed

phenomena.

Soil depth

To apply Equation (3) to Tennessee Valley, we need an estimate of the diffusivity, K, the bedrock and soil
density, and the production function. Reneau (1988) estimated diffusivity by solving Equation (2) for X by
dividing a calculated flux of sediment required to in-fill unchannelled valleys (based on radiocarbon deter-
mined deposition rates) by the mean gradient of the adjacent source slopes. This gives a roughly Holocene
averaged diffusivity. As reported in McKean er al. (1993), data supplied by Reneau (1988) for 34 unchan-
nelled valleys in the coastal mountains of California, Oregon and Washington gave a mean diffusivity of
49 + 37 cmz/yr, with no clear regional differences. The nearest and most similar sites to Tennessee Valley
gave values of 54 and 44 cm?/yr. Here we will use 50 cmz/yr. The bedrock to soil density ratio is, according
to data in Reneau (1988) about 1.7.

The production function is not known, but we have some guidance from field data of what might be
reasonable. Bulk density profiles in the thick colluvial deposits of the unchannelled valleys of this area
show a near-linear decrease with depth to about 1.5m and then remain nearly constant (Reneau, 1988).
These deposits accumulate from convergence transport caused by the diffusive-like effects of frequent bio-
logical disturbance, largely due to burrowing mammals in this area (e.g. Black and Montgomery, 1991).
The depth profile may reflect the decrease in dilational effects of biogenic mixing (see Brimhall et al.,
1992), for discussion of this phenomenon), with penetration very rare below 1-1.5m. Field observations
of depth of rooting and animal burrows are congruent with this interpretation. Hence we suggest that
the production of loose soil from the underlying weathered bedrock stops once a soil reaches this depth.
At the two nearby sites where the diffusivity was determined, the average soil depth on the convex side
slopes which serve as sources for the sediment that accumulates in the valleys is about 30cm. Assuming
the soil depth to remain constant during the period of accumulation in the valley axis we can estimate
the bedrock to soil conversion rate from the net erosion recorded in the thickened deposits in the valley
axis. For the two sites this value is 0.035 and 0.05 mm/yr. Here we assume that soil is produced at the
rate of 0.0042cm/yr from bedrock for a 30cm thick layer of soil. By fitting an exponential function,
~8e/8t = Pye™™" to the thick (no production at 150cm) and thin soil production rates (0.0042cm/yr at
30cm) we obtain Py = 0.019cm/yr and m =0.05 (for a soil 'depth in cm). For depths greater than
100cm, the productivity rate is assumed to be zero.

We could reason that maximum production should occur at some intermediate depth most favourable to
biological activity and frequent contact with the underlying bedrock. In our study area, pocket gophers are
common, and generate tunnels about Scm in diameter. As an alternative to the exponential function, we
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Figure 4. Comparison of predicted pattern of soil depth with areas of thick colluvium mapped reported by Montgomery and Dietrich

(1989) on a different topographic base map. Shaded area are clements in Figure 3 with depth greater than 1m. Channel network

mapped in the field is shown as a solid line; some tributary channels do not connect to the main branch. Mapped boundaries of thick
colluvium are shown with broken lines that mostly define nearly closed loops at the end or surrounding first-order channels

have selected a peak production at 25cm (Figure 2). Given the lack of data to specify this function, we have
made the peak production close to the observed value (at 30 cm depth) and assigned an arbitrarily low value
at the zero depth intercept. .

- Numerical experiments show that the model is insensitive to the initial soil depth, so we selected 30cm as

Wdim e mpom— -t nen 8
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a value close to that for much of the ridges.- Radiocarbon dating of basal colluvium in this area indicates
that deposition began at about 9000 to 15000 years ago (Reneau et al., 1990), hence a run time of 15000
years was chosen to generate the soil depth. We found that the model gave consistent results if we used 100
year time steps or less. Hundreds of numerical experiments have been performed, but with limited space
here we give only two examples. ) ]

Figure 3 shows the predicted pattern of soil depth after 15000 years for a 5m grid spacing for the
exponential case. No tuning of any of the parameters has been performed. As observed in the field, nar-
row ridges have the thinnest soiis and thick colluvium has accumulated in the valleys. This might be the
pattern of soil depth if all incision due to water runoff ceased. Such processes present soil build-up in the
larger valley bottoms and locally roughen the topography. We have not accounted for this effect. Figure
4 shows the mapped pattern of thick colluvium reported by Montgomery and Dietrich (1989) using a
completely different and coarser base map before the digital elevation data were available. There is
good correspondence between the mapped and predicted area of thick (greater than 1.0 m) colluvium.
Also shown is the mapped channel network which, where it extends downslope of the colluvial val-
leys, is bedrock or alluvial-mantled. The edges of the area shown which lack the heavy lines were not
mapped in 1989. In the centre of the map area, however, several small valleys are predicted to have thick
colluvial deposits, but instead are mostly thinly mantled bedrock. This appears to be due to scour by
shallow landsliding. '

The alternative production law, with the peak production at 25cm, gives substantially different results
(Figure 5). The lower peak value causes many of the more sharply curved ridges to have bedrock at the
surface — a result inconsistent with field observations. This effect could, of course, be eliminated if we
put the peak up as high as the exponential intercept with zero depth, but this will not eliminate one other
inconsistency. As explained by Carson and Kirkby (1972) for a similar production function, soil depths on
the left-hand side of the peak of the production rate are not stable values. Without erosion, soil will simply
progressively thicken to the point where production declines to zero. With soil erosion, thinning of the soil
will decrease to induce less soil production, and this will lead to stripping of the soil to bedrock. Hence there
should be no equilibrium soil depth values observed in the field less than the depth of peak production if the
‘humped’ production law is to apply. In our study site, soil depths between zero to 25cm are common on
ridges. Our modelling suggests that depth adjustments are rapid on thin soils, hence these thin soils are
probably in local equilibrium (erosion approximately equals production). Therefore, if a peak production
exists, it must occur at soil depths close to zero, rather than at a depth of 25¢m as chosen.

For this landscape the exponential function is the simplest and is determined empirically. We do not yet
know when once the bedrock completely emerges at the surface whether the prodcution rate actually drops
or stays at the high value given by the exponential projection to zero depth. For the problems examined
here, this distinction is not essential.

In Figure 6, the rate of surface elevation change (8z/8t = 8h/8t + Be/d1) is plotted against the diver-
gence of sediment transport (KV2Z) for each cell used to create Figure 3 (soil depth after 15000 years).
The data fall along two distinct relationships. In convergent areas (valleys), net deposition halts soil pro-
duction (9e/8t = 0) once the depth exceeds 1 m. Equation (4) then applies, giving the linear relationship
shown in Figure 6, with a slope of 1.0. In divergent areas (ridges), a balance developes between the produc-
tion rate and the divergence of sediment transport, soil thickness is time dependent (8h/8t = 0) and Equa-
tion (5) then applies. The slope of this linear relationship, then, is p/p;, the rock to soil bulk density ratio.
This general tendency for the landscape to be divided into hillslopes with time-independent soil thickness
and valleys with a net accumulation is quickly established (within several thousand years). This suggests
that unless a significant recent landslide or a climatically driven change in the production rate or diff usivity
has occurred, the soil thickness on divergent areas should be at equilibrium thickness values.

The model smoothes the initial topography, most rapidly removing the sharp curves (as long as the bed-
rock does not emerge). If the model is run for a period much longer than that dictated by the age of the
colluvial fills (more than 30000 years at our site), the topographic contours become very smooth and
much of the local depth variation is eliminated. Although initial gridding of the digital clevation data
introduces some artificial roughness which is removed by diffusive transport, we elected to use the value
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Figurc 6. Plot of rate of vertical elevation change of the ground surface as a function of local topographic curvature, V2z, times the
diffusion coefficient after 15000 years

of soil depth at 15000 years with the initial topography to drive the slope stability model to retain as much
of the present topographic influence on slope stability as possible.

Slope stability

To apply Equation (16), four strength parameters and five hydrological parameters must be estimated.
Although the model would allow these parameters to be specified individually for each cell, unlike the
soil depth model we have no theory or field evidence for the spatial structure of these parameters, so
here we assign one value for the entire area. Based on sampling and testing reported elsewhere (Reneau
and Dietrich, 1987a; 1987b; Dietrich et al., 1993), we estimate ¢ to be 40°, the wet soil bulk density to
be 2000kg/m> and the soil cohesion to be zero. Root cohesion varies with vegetation type and we will
examine the effect of varying cohesion on the predicted pattern of instability.

Values for the hydrological properties are estimated from falling head tests performed by D. Mont-
gomery in Tennessee Valley area on piezometers in the . thickened' colluvium. around a channel head
(Montgomery and Dietrich, in press) and by C. Wilson'in a nearby basin where tests were performed on
shallow side slope colluvium, underlying bedrock and in deep colluvium and underlying bedrock in two
hollows (Wilson and Dietrich, 1987; Wilson, 1988).- Montgomery’s data show.the shallow colluvium in
the hollow at his study site to have a saturated conductivity greater than 2'x 10™% m/s and to decrease
slowly with depth below the surface. Wilson’s"data 'suggest that the thinner side slope colluvium may be
Jess conductive than in"the holloWw axis ‘and that tHe' bédfock immediately undernéath the colluvium is
about 10 times less conductive”and ‘decliries. with ‘depth ‘more’ rapidly: Wilson'and Dietrich (1987) and
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Figure 7. Predicted and observed pattern of slope instability in Tennessee Valley using Equation (16) in text. Soil depth is lhal‘shown in Figu.re 3 Angle. of
internal friction is 40°, root cohesion is 1000 N/m?, ny = 0.5, ny + 1.4, ky/k| = 0.2. Relative stability is shown by the logarithm of the ratio of effective
precipitation to surface infiltration rate, with high negative values implying the small amounts of steady-rate rainfall necessary for 1pstahnluy. ’l?hc bla'ck
outlines arc the approximate location of the debris slide scars. The scars are shown larger than their actual size to account for plotting uncertainty with
regard to location
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Wilson et al. (1989) demonstrate that although the bedrock is less conductive it contrib'utes to storm ﬂow in
large rainfall events. Qur best esnmatc which ‘combines these two data ‘sets,iis k;'=2'x 10™*mys,
ky =4 % 1073 m/s, n, = 0.5 (1/m) and n;'=:1.4 (1/m): In thick colluvium the bulk- -density decreases rapidly
with depth and by about 1.5m the saturated conductivity is not distinguishable from that of the bedrock.
Hence we set iy equal to 1.5 m. There is considerable uncertainty about these parameters and we explorc the
effects of different parameter values.

Figure 7 shows the predicted and observed pattcm of slope instability for the strength and hydrologxcal
parameters estimated above (values given in the figure legend). A logarithmic scale of g/ky is used to show
the full range of possible values. All but 3 of the 43 scars fall within the instability zones with 80% at least
partly touch an area thhm log(gq/k,) of less than —2.5, i.e. g/k, = 0.00316. For this instance in which we
estimate k; = 2 x 10~* m/s, the steady-state daily rainfall corresponding to log(q/ky) of 3.1, -2.8, 2.5,
—2.2and —19 is 1.4, 2.7, 5.5,-10.9 and 21.8 cm/d, respectively. Note that if this estimate of ky is roughly
correct, an extremely high steady-state rainfall is necessary to cause mstabthty of the steep side slope and
ridges. .

Figure 8 shows a map of the relative amount of rainfall necessary to cause mstablhty for four values of
cohesion: zero, 1000, 5000 and 13000 N/m These values represent no vegetation, grass, brush and hard-
wood trees, respectively (e.g. Reneau and Dietrich, 1987a). This shows how root cohesion strongly affects
the range of topographic settings where instability is likely to occur and the intensity of rainfall needed to
cause instability. With decreasing root strength, areas of predicted instability spread up to the valleys and
onto the ridges. The importance of root cohesion is not a new finding, but these maps appear to be the first
portrayal of how realistic changes in root strength with vegetation type alters the location and relative
instability of the land.

The four maps in Figure 8 may represent the effects of land-use and climate change. The highest root
cohesion (13000 N/m?) would be associated with forest that might have covered this area during glacial
period. The warmer, drier climate of the interglacials resulted in brush and grasslands (5000 N/m?). Graz-
ing and fire could reduce the root cohesion to chronically low values of 1000 N/m? and locally to values of
zero.

4000 _, ............. ............. B ......... ‘ ..... .
: : Cr=0, ' 5 Cr=0,
: : layered : no layers
3000 _..... ............. ............. ........... ............ .......... . ........... ; ..... -
’ i Cr=1000, : : ¢ Cr=1000,
: i no layers : : layered
2000 [ fr st N fos ;

Cr=5000,
layered

1000

Number of unstable elements

-39 -36 -33 -30 .27 -24
log (a/ky)

Figure 9. Number of elements that are predicted to have shallow landslides as a function of the logarithm of the net prccipit.alio.n
divided by the surface saturated conductivity for varying strength, soil depth and hydrolo;ical properties. The bold black line is
the example shown in Figure 7. The two lines labelled with x’s are the zero and 5000 N/m* cohesion example shown in Figure 8.

The three lines labelled with circles show the instability distribution for constant soil depths of 30, 60 and 100cm, but otherwise

the same parameters as the case represented by the bold black line. The two lines labelled with triangles show the effect of having

no contrast (no layers) between the soil and bedrock conductivities — that is, there is a single cxponentxal decline in conductivity
from the ground surface to infinity, for the case of C, = 0 and for C; = 1000 N/m?.
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Given the uncertainty about the parameters in Equation (16), we have performed a number of sensitivity
analyses. Figure 9 summarizes some of our findings. This shows the number of elements that are unstable
for a given value of log(q/k;), with the heavy line being the example shown in Figure 7. Three findings are
apparent in this figure. Firstly, if the soil is more conductive and varies less in its conductivity with depth
than the underlying bedrock, then less precipitation is required to cause instability and the area of
instability is much greater. Compare ‘C, = 0, layered’ with ‘C, = 0, no layers’, the latter being the case
in which the saturated conductivity declines uniformly with depth across the soil-bedrock boundary
and there is significant flow in the bedrock. The bold line and the line labelled ‘C; = 1000, no layers’
and marked with triangles is this same comparison for C, = 1000 N/m?. If there is no variation with
depth (ky = kj, n) = ny) and ny is small (n, < 2), then deep flow in the bedrock occurs and instability
is focused on the unchannelled valleys.

Secondly, soil depth has a large effect on the pattern of relative slope stability. Shallow soils (30 cm) are
held in place even with minor root cohesion (1000 N/m?) and few elements are unstable. With increasing
thickness, the areas of predicted instability spread up the ridges. Uncertainty in an appropriate mean
soil depth has a large effect on the pattern of predicted instability. The soil depth model, on the other
hand, systematically and correctly predicts thin soils on the ridges and thick in the valleys, which has
the effect when combined with the influence of root cohesion of making ridges more stable because of
the larger influence of root strength. There are relatively small differences between the model for a constant
soil depth of 60cm and the predicted spatially variable soil depth, although again we found that the
instability is spread further up the ridges with the constant soil depth. In a practical application it would
be difficult to claim that the slope instability based on the spatially variable soil depth and that based on
a 60cm soil depth are different. The challenge would be to estimate a representative average depth. If
part of the hazard is defined by the potential volume that can be released, however, then the spatially uni-
form soil depth model is inferior because it will either underestimate by large amounts the volume in
unchannelled valleys or it will greatly overestimate the side slope and ridge instability (by predicting
too great a soil depth there).

Finally, Figures 8 and 9 clearly show the effect of varying root cohesion on relative stability. Much more
than any other parameter, root strength can rapidly change due to local effects such as disease and due to
large-scale effects such as land-use, fire or climate change.

DISCUSSION

We have attempted to formulate the soil depth and slope stability models on a physical basis with a mini-
mum number of parameters and to make these parameters quantifiable from field observations or mechan-
ical analysis. In the soil depth model, the diffusion coefficient can be estimated by a variety of field methods,
as described in this paper. The soil production law has not previously been quantified, and here it is only
very crudely estimated as an exponential function of soil depth. The soil production law subsumes all
weathering processes inside the production function, ignoring chemical losses that occur during soil trans-
port. No effects of velocity structure with depth are considered. If soil transport is by a linear slope-depen-
dent processes, then our model suggests that because local equilibrium is quickly established, field
measurements of soil depth and local curvature would define the shape of the soil production function
[see Equation (5)]. A field study is underway to test this hypothesis.

The extent of bedrock exposure also places an important constraint on the production function and dif-
fusivity, According to Equation (6), bedrock will crop out wherever

Lo 2e
K p, Ot
that is, where the topographic curvature exceeds the production rate divided by the diffusivity. If the digital

clevation data are of sufficiently high resolution to define the local curvature in areas of bedrock exposure,
then this criteria can be used to set this ratio, and if the diffusivity can be estimated, then the maximum

production rate can be determined. .
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Spatial variability in diffusion and production, however, is difficult to quantify. These rates probably
vary with rock type, climate and the soil biota. Large differences in diffusion coefficient have been identi-
fied with rock type (e.g. McKeéan ef al., 1993), but climatic dependency is not well established (see review in
Fernandes and Dietrich, in prep.). - o L

If the results of the soil depth model are viewed from the perspective of a longer term landscape evolu-
tion, important questions are also raised. Figure 3 shows that the soil depth on ridges is predicted to vary
widely across the landscape. Local equilibrium is established between production and erosion and produc-
tion varies exponentially with depth. This implies that there is a large variation in rates of erosion and the
land is far from morphological dynamic equilibrium —, even though the soil depth is locally in equilibrium.
Only when the ridges have a contact curvature, V2z, will the erosion rate by diffusive transport be spatially
uniform, hence the mapping of curvature from high-resolution digital data may prove a useful method to
examine landscape equilibrium tendencies. Spatial variation in diffusivity, K, although certainly likely,
would have to covary with curvature for the ridges at our study site to be eroding at a constant rate.
This seems unlikely. Bedrock outcrops in a soil-mantled landscape may also indicate a non-steady-state
landscape, because bedrock crops out either at locations of maximum erosion (exponential production
law) or minimum erosion (maximum production at some finite depth). Changes in diffusivity or produc-
tion rate with time could change the extent of bedrock outcrop and the spatial dependency of depth or
curvature, but unless the model is incorrect, non-uniform curvature values for ridges imply a spatially vari-
able erosion rate.

All the strength and hydrological parameters in the slope stability model can be obtained from field mea-
surements or laboratory analysis. In practice, however, some of these parameters are difficult to define,
particularly with regard to their spatial variation. Even for our small study area, we have extrapolated para-
meters from nearby areas and assumed no spatial variation in their magnitudes.

Our hydrological model for the case in which k; = k;, ny = np of Equation (14) is similar to that used in
TOPMODEL (Beven and Kirkby, 1979), which can be written as

ga = kmtange™/™ (18)

in which, to convert to our model, m = —~1 /n, y = yycosf and a = a/b. Note, however, that we use the
more physically correct sin# rather than tand, which is important on steep slopes. Also, Equation (14)
allows us to examine, explicitly, the effect of conductivity contrasts between bedrock and soil. Our k values
reported here are low for catchment scale applications of TOPMODEL (M. J. Kirkby, pers. comm.). Our
estimates are based on field measurements and we suggest that the lower values may be more appropriate
for hillslopes rather than entire catchments. Also, our n values are very high compared with those used in
TOPMODEL (M. J. Kirkby, pers. comm.). Again, this may be a scale effect in that our estimates of 7 come
from field measurements of conductivity on hillslopes and are used to predict only local hillslope response,
not catchment scale runoff.

The study by Okimura (1989) offers an instructive comparison with our resuilts. Guided by earlier mod-
elling work using digital elevation data and a coupled slope stability and hydrological model which solves
for the pore pressure necessary to cause instability as a function of time since the start of rainfall (Okimura
and Kawatani, 1987), Okimura conducted a field study to document the spatial variation in potential fail-
ure layer thickness. This layer is identified on the basis of cone penetration results and therefore may not
correspond to our definition of soil. Unlike our field observations on soil thickness and our modelling re-
sults, he found no systematic relationship with topography and attributed this to effects of past failures.
Similar to our findings, however, he concluded that using the measured or estimated spatial distribution
of potential failure depth gave very different results from assuming a model with a spatially constant esti-
mated mean depth. He also showed that the number of elements classified as unstable increases significantly
with increasing mean depth. Okimura’s model does not consider the effects of exponential decline in con-
ductivity with depth, nor the effects of flow in bedrock.

Despite the general success of models based on the infinite slope assumptions, hillslope failures in detail
are not necessarily well represented by the infinite slope model, especially when root cohesion matters (e.g.
Burroughs ez al., 1985). For example, the size of landslides varies with root strength and, therefore,
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vegetation (¢.g. Reneau and Dietrich, 1987a). Also, field observations at sites of shallow failure often sug-
gest that instability was initiated by erosion of the toe due to channel head advance. Local exfiltration
gradients associated with bedrock fracture heterogeneity may be responsible for the timing and location
of landslides (e.g. Wilson and Dietrich, 1987; Montgomery et al., 1990). These local effects are not
included in the infinite slope model and may be more important than the uncertainty in some of the
model parameters.

Is the more complicated slope stability model proposed here a substantial improvement over our earlier,
two-parameter model that does not include effects of soil depth variation, vertically varying conductivity or
root strength? In terms of gaining insight regarding controls or slope stability, we suggest the answer is
‘yes’. But with regard to the practical application to slope stability, the answer is less certain. Analysis
by Montgomery and Dietrich (1994) of the same study site using our earlier simpler model yielded equally
successful results in identifying failure sites. This is partly due to the low root cohesion in this area. When
the root cohesion is large, the more complicated model will predict a much smaller area of potential
instability than the earlier simpler model. The simpler model cannot be used to ask questions about effects
of vegetation changes or differences in bedrock or soils (as influencing vertically varying conductivities).
Field studies may eventually yield ranges of diffusivities and soil production laws and their environmental
controls such that the soil model will be fairly easy to apply to a new area in a manner that correctly por-
trays the gross spatial variation in soil depth. Unfortunately, for essentially all practical purposes, the
hydrological component of the slope stability model cannot be calibrated, as details of the subsurface con-
ductivity field are rarely known and are not easily obtained.

The large influence of cohesion on the spatial extent of instability (Figures 8 and 9) presents a specific
dilemma. Root cohesion is the most variable of all of the slope stability parameters. Fire, disease, land-
use, the effects of extreme weather events may all cause local or watershed-wide rapid changes in root
strength. How should a map of slope stability with a specific root cohesion be interpreted? For example,
consider a long, weakly convergent 30° hillslope with dense vegetation on it which, due to root strength,
is estimated to be stable even when saturated. Is it safe to build a house downslope? Is this a site that
does not experience landsliding? Our geomorphic analysis might clearly say ‘no’, as the weakly convergent
topography may be a partially infilled bedrock hollow where periodic landslides occur. Presumably the
most cautious approach is to assume that at some time the root cohesion can be reduced to zero. There
is a lot of land, however, between the area predicted to be unstable with no cohesion and that with a
modest amount of cohesive strength which may have considerable value.

Further work is needed on how to incorporate the importance of root strength into land-use decisions. If
the conservative approach of assuming no root strength is used (which can be done with the two-parameter
model), then vast areas of land in steep hilly areas would be considered potentially unstable — and that is
probably correct on geomorphic time-scales, but may be less easily defended on a management time-scale.
An approach that has been explored is to treat root strength and other parameters probabilistically (e.g.
Hammond er al., 1992) or, in the case of timber harvest, a function of time since cutting (e.g. Sidle,
1992). Although the assignment of probability functions remains largely guesswork, an approach of this
kind seems warranted in the context of land-use decisions.

Unlike rivers, which progressively drain larger areas with increasing total catchment area, hillslopes are
of only local extent, even in large watersheds. Soil depth and shallow slope instability are strongly dictated
by local topography. Therefore, it is desirable to retain the local physical basis of these models when
applying them to large watersheds. The simplicity of these models allows this, although again it may
be necessary to assume that parameters do not vary significantly over local scales. Hence, although it
is desirable and probably necessary to develop ways of representing the hydrological response of large
areas by means other than the summing up of all the detailed processes, for soil depth and slope stability
analysis the limited spatial extent of hillslopes and the importance of local processes argues for retaining
the fine scale analysis. If the goal is to model sediment flux, then perhaps the diffusivity, like saturated
conductivity, can be treated as a scale-dependent parameter (e.g. Koons, 1989). A field calibrated trans-
port law for soil flux from shallow landsliding is not available, hence analysis of scaling issues for this
process seems premature. - T '




SCALE ISSUES 8: PROCESS-BASED MODEL FOR SOIL DEPTH AND LANDSLIDING 399

CONCLUSIONS

e I T L K S L

The simple model for soil depth proposed here appears to explain the general tendency in hilly landscapes
for the sharp convex ridges to-have thin soil or bedrock outcrop and the swales or unchannelled valleys to
be mantled with thick soils. The model also sheds some light on the likely form of a ‘law’ for the rate of
conversion of bedrock to soil. Soil depth rapidly develops a locally stable value for a given curvature.
There is no stable value for soil depths thinner than that at which maximum production occurs. Because
thin soils are common in steep, sharp-crested hillslopes, this suggests that the maximum production rate
of soil probably occurs at nearly zero soil depth. The shape of the production function for the case of
soil transport by a linear slope-dependent diffusive process is given by the variation of soil depth with local
topographic curvature. These model results suggest specific field observations that should lead to an
enhanced understanding of soil production rates.

With the ability to predict soil depth, it is possible to use the infinite slope model to analyse the influence
of root cohesion and subsurface conductivity structure on the spatial distribution of shallow landslide
potential on real landscapes. Root cohesion affects the total area prone to slope instability and the relative
amount of precipitation needed to cause landslides. The variation in saturated conductivity with depth
partly controls the relative instability of hollows or unchannelled valleys versus steep side slopes. The
less conductive the bedrock relative to that of the soil, the less stable the side slopes. Root cohesion
increases the stability of side slopes relative to hollows. However, root cohesion, unlike other parameters
affecting soil strength, can vary widely in time due to land use, climate or biological processes such as dis-
ease. This sensitivity may give it a dominant role in linking land-use and climate change to slope stability.
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