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[1] Fluvial processes erode landscapes in response to a wide range of discharges. The
importance of a given discharge to the erosion of a basin can be calculated by multiplying
the discharge’s frequency of occurrence and the erosion rate produced by the discharge.
The discharge that contributes the most geomorphic work is called the geomorphically
effective event (GEE). In this paper, the behavior of the GEE is examined when a generic
stream power model with a threshold is used to describe either the detachment or transport
of sediment by flowing water. The results suggest that the return period of the GEE
depends primarily on the threshold value when the exponent on discharge is less than 2.
Otherwise, it depends primarily on the exponent. The GEE usually cannot be substituted
for the probability density function of discharge because it produces a different long-term
erosion rate. Furthermore, the return period of the GEE can vary spatially in
a basin. For example, the return period can be different between locations where
the fluvial process is dominant and subdominant if the threshold is nonzero. For a
detachment-limited model the return period of the GEE is different upstream and
downstream of knickpoints, and for a transport-limited model the return period is different
along channel profiles even at steady state. Spatial variation in streamflow generation
also produces spatial variations in the return period of the GEE.
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1. Introduction

[2] Over long periods, landscapes respond to fluvial
processes driven by a wide range of discharges. Low
discharges have little ability to modify the land surface,
but this contribution is magnified because such flow rates
are common. High discharges have a much greater ability to
modify the land surface but rarely occur. The concept of a
geomorphically effective event (GEE) was proposed by
Wolman and Miller [1960], who suggested that the geo-
morphic work done by a particular discharge can be
measured by the product of the sediment transport rate that
occurs as a result of the discharge and the frequency with
which the discharge recurs. The GEE is the event that
maximizes this product and is also termed the effective
discharge. On the basis of their observations, the GEE for
suspended sediment load is a relatively frequent event
occurring about once a year. Numerous subsequent
researchers repeated this magnitude-frequency analysis for
other streams, and these results show that the return period
of the GEE is highly variable between locations [e.g.,
Benson and Thomas, 1966; Andrews, 1980; Nolan et al.,

1987;Ashmore andDay, 1988; Leopold, 1994; Sichingabula,
1999]. Kirchner et al. [2001] used isotopic techniques to
measure sediment yield over large timescales in 32 mountain
catchments in Idaho and found that the long-term sediment
yield is dominated by rare catastrophic erosion events instead
of the frequent erosion events. Ashmore and Day [1988]
studied suspended sediment transport and streamflow for
21 streams in the Saskatchewan basin and found it
impossible to make a generalization about the return
period of the GEE. In order to explain the variability
of the observed effective discharge, Wolman and Gerson
[1978], Ritter [1988], and Miller [1990] suggested that
the effectiveness of discharges in removing sediment in
rivers is not necessarily equivalent to effectiveness in
shaping the landscape as a whole, implying that sediment
transport is just one of many relevant fluvial processes.
Hartshorn et al. [2002] examined the impact of event
sizes on bedrock incision along a channel cross section in
Taiwan and found that vertical incision is driven by
frequent events, while rare events associated with super-
typhoons play a role in widening the channel.
[3] The return period of the GEE can also vary between

upstream and downstream locations if the frequency of
occurrence of discharge and fluvial processes are scale-
dependent. Wolman and Miller [1960] suggested that the
skewness of the distribution of discharges decreases with
increasing basin area, which would cause a decreasing
return period for the GEE as one moves downstream. This
result is supported by the study of Andrews [1980] who
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estimated the effective discharges at 15 gauging stations and
found that the return period of the GEE decreases with
increasing basin area.
[4] The GEE has also been considered from a more

theoretical standpoint. Nash [1994] studied the GEE by
assuming lognormally distributed discharges and a power
law relationship between sediment transport rate and dis-
charge, and he compared the predicted GEE values with
estimates for 55 U.S. streams. The theoretical analysis
shows that the GEE increases exponentially with an in-
creasing exponent on discharge in the sediment transport
model and that the return period of the GEE increases with
discharge variability. However, he also found that the
observed and predicted return periods of the GEE are in
poor agreement due to the failure of the power law function
to predict accurately sediment transport rates, perhaps due
to the presence of thresholds. Baker [1977] noted earlier that
thresholds for erosion models tend to shift the GEE to larger
and less common events. Costa and O’Connor [1995]
considered the fact that discharge varies during any given
hydrograph. If a threshold is present, they argued that the
geomorphic effectiveness of the hydrograph is determined
by the combination of a large peak discharge and a long
duration during which the discharge exceeds the threshold.
[5] Although the determination of the GEE is complicated

by the factors described above, the GEE is used in many
applications, such as stream restoration [Shields et al., 2003]
and the evaluation of ecological processes [Doyle et al.,
2005]. The concept of an effective discharge is also a valuable
tool in analyzing and modeling geomorphic processes be-
cause it allows one to quantify the role of discharge and
sometimes climate with few variables or parameters. For
example, in field studies of geomorphic processes, the effec-
tiveness of fluvial processes is commonly quantified using
drainage area as a substitute for discharge [e.g.,Montgomery
and Dietrich, 1992; Roering et al., 1999]. This approach
implicitly represents fluvial processes by an effective dis-
charge, which is assumed to depend linearly on drainage area
with some unknown coefficient. Similarly, numerical land-
scape evolution models simulate bedrock detachment and/or
sediment transport caused by flowingwater as a function of an
effective discharge [e.g., Kirkby, 1986, 1987; Willgoose et
al., 1991a, 1991b, 1991c; Anderson, 1994; Howard,
1994, 1997, 1999; Tucker and Slingerland, 1994, 1997;
Densmore et al., 1998; Whipple and Tucker, 1999]. In
such models, the fluvial processes occur in response to
either a perpetual or intermittent effective discharge
[Paola et al., 1992; Tucker and Slingerland, 1997;
Howard, 1999]. However, it is not clear that these
effective discharges are equivalent to the GEE. Some
recent landscape evolution modeling studies have dis-
carded the effective discharge in favor of a stochastic
model for precipitation events [e.g., Tucker and Bras,
2000]. In order to examine the role of extreme discharges
in fluvial erosion, Lague et al. [2005] assumed that the
distribution of daily discharges has a power law tail
instead of the exponential tail, and found that discharge
variability has a complex effect on the predicted steady
state river profile.
[6] In this study, we seek to understand the behavior of

GEE for stream power models when a threshold is included.
In particular, what characteristics of the model control the

GEE? Is the GEE equivalent to the effective discharge? Do
we expect the GEE to be the same among different fluvial
processes? Do we expect the GEE to have the same return
period throughout a basin? We first extend the analytical
analysis of Nash [1994] by introducing thresholds in the
representations of the fluvial processes and investigating the
impacts on the GEE (section 2). Then, we use a 1-D
numerical model to simulate the evolution of a combined
hillslope and river profile (section 3). In this model,
precipitation events are generated using the Poisson rectan-
gular pulse model [Eagleson, 1978; Tucker and Bras,
2000], and the GEE is estimated for both detachment-
limited and transport-limited conditions along the river
profiles during steady state and transient states. Finally,
we use a 2-D detachment-limited landscape evolution
model to consider the role of runoff generation mechanisms
in determining the GEE (section 4). We simulate ground-
water movement using a dynamic 2-D Dupuit equation for a
homogeneous, isotropic, and unconfined aquifer [Huang
and Niemann, 2006]. Our main conclusions are highlighted
in section 5.

2. Analytical Analysis

2.1. Determining the GEE of a Fluvial Process

[7] For any location on a landscape, the strength of a
fluvial process can be viewed as a random variable in time,
which we denote as E. E could represent the rate of fluvial
detachment of bedrock or the sediment transport rate, but
for simplicity we refer to it as an erosion rate. Because E is a
continuous random variable, the frequency with which a
given value of E occurs can be described by a probability
density function (PDF) fE (E). If fE (E) is known, then the
mean erosion rate E can be found from:

E ¼
Z 1

0

EfE Eð ÞdE: ð1Þ

E is not usually considered an independent variable; rather,
it is a function of the discharge Q. So, one can write E =
g(Q), where g describes the dependence of the erosion on
discharge, and the discharge Q is the random variable that is
determined independently. If we know the PDF of discharge
fQ (Q) and assume g to be a monotonically increasing
function, then fE (E) can be derived using the well-known
derived distribution formula [Ang and Tang, 1975]:

fE Eð Þ ¼ fQ g�1 Eð Þ
� � dg�1 Eð Þ

dE
: ð2Þ

Substituting this relationship into equation (1), one can also
calculate the mean erosion rate as:

E ¼
Z 1

0

g Qð ÞfQ Qð ÞdQ ð3Þ

or in the more common notation:

E ¼
Z 1

0

EfQ Qð ÞdQ: ð4Þ
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The contribution of a range of discharges to the mean
erosion rate can be calculated by restricting the integration
in equation (4):

Z Q2

Q1

EfQ Qð ÞdQ ð5Þ

where Q1 and Q2 define the range of interest. If one
considers smaller ranges of discharge, it becomes clear that
EfQ(Q), despite its peculiar units, is a measure of the
importance of a given discharge Q to the mean erosion rate.
The discharge with the largest value of EfQ(Q) is the most
important discharge to the evolution of the landscape and is
usually considered as the GEE [e.g., Wolman and Miller,
1960; Nash, 1994]. We refer to this discharge as Qp, where
the subscript ‘‘p’’ indicates it is the primary discharge to
which the landscape responds. It should be noted that
alternative definitions for the GEE have been proposed in
the literature including the discharge associated with the
median of EfQ(Q) [Vogel et al., 2003].
[8] In order to evaluate the GEE, a generic expression

relating discharge and the fluvial erosion rate is considered.
In particular, we use

E ¼ bQmSn � F ð6Þ

where b is an erodability coefficient, S is the local slope, m
and n are constant exponents, and F is a threshold that must
be exceeded before erosion occurs. This type of model is
commonly referred to as the stream power model, and it has
been used to describe the fluvial detachment of bedrock and
the transport of sediment [e.g., Howard, 1994; Tucker and
Slingerland, 1997]. The stream power model can be derived
from several conceptual views of erosion. For example,
Howard and Kerby [1983] suggested that the detachment
rate of bedrock is proportional to shear stress, which
depends on the hydraulic radius of the channel and the local
slope and can be expressed in a form like equation (6). Seidl
and Dietrich [1992] presented another model for bedrock
detachment where bedrock incision is proportional to the
stream power, which is the product of discharge and slope.
As for sediment transport capacity, many of the commonly
used sediment transport equations can be recast into a power
law function of discharge and slope [Willgoose et al., 1991a;
Howard, 1994]. However, equation (6) excludes some
important models of bedrock detachment [e.g., Sklar and
Dietrich, 1998; Whipple and Tucker, 1999] and sediment
transport [e.g., Bagnold, 1954]. The exponent m for bedrock
detachment usually ranges from 1/3 to 5/6, which depends
upon bedrock erosion processes [Hancock et al., 1998]. The
exponent m for sediment transport is usually larger than
one, for example, 1.5 [Howard, 1994]. The ratio m/n for
bedrock detachment is found to fall into a relatively narrow
range near 0.5, consistent with empirical values derived
from field data [Whipple and Tucker, 1999]. For the sake of
mathematical convenience, a critical discharge Qc can be
defined as

Qc ¼
F
bSn

� �1=m

ð7Þ

which allows equation (6) to be written as

E ¼ bSn Qm � Qm
c

� �
: ð8Þ

Notice that the critical discharge Qc has an inverse
relationship with slope, so one could also express the
threshold in terms of a critical slope.
[9] To determine the GEE, the PDF of discharge also

needs to be identified. We consider two PDFs: the one-
parameter exponential distribution and two-parameter log-
normal distribution. The exponential distribution has been
used previously in landscape evolution modeling because of
its simplicity. Tucker and Bras [2000] simulated precipita-
tion as a series of storm events that occur according to the
Poisson rectangular pulse model [Eagleson, 1978]. In this
model, the rainfall rate during a storm P, the storm duration
Tr, and the time between consecutive storms To are all
considered as independent random variables. Each variable
conforms to an exponential distribution, so for example the
PDF for rainfall rate P is

fP Pð Þ ¼ 1

P
exp �P

P

� �
ð9Þ

where P is the mean rainfall rate when rain is occurring. If
the watershed or region under consideration is relatively
small, then the rainfall rate is approximately constant in
space and the response time of the basin is shorter than the
duration of the storm event. If the infiltration rate is
neglected, then all precipitation becomes surface runoff and
the discharge Q at any channel cross section can be found
from

Q ¼ PA ð10Þ

where A is the land area that drains through the cross
section. Thus the PDF of the discharge during storm events
is

fQ Qð Þ ¼ 1

Q
exp �Q

Q

� �
ð11Þ

where the mean discharge during a storm is Q = PA [Tucker
and Bras, 2000]. The PDF for discharge is fully defined if
we known either Q or P. Notice that the average discharge
during the year is much lower than Q due to the large
periods between storms in which discharge is assumed to be
zero. The mean value of the annual discharge Qannual can be
found:

Qannual ¼
Tr

Tr þ To

Q: ð12Þ

where Tr is the mean storm duration and To is the mean
interstorm period.
[10] The lognormal distribution is often used to represent

the PDF of daily discharges for perennial channels [Chow,
1954; Krumbein, 1955; Kuczera, 1982; Leopold, 1994].
Here, this distribution is used to describe the discharge
during storm events across the small watershed or land-
scape. Because the lognormal distribution includes two
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parameters, it allows explicit consideration of the role of the
variance in determining the GEE. The lognormal PDF for
discharge can be written as

fQ Qð Þ ¼ 1

Q
ffiffiffiffiffiffi
2p

p
sy

exp � 1

2

ln Qð Þ � my
sy

� �2
" #

ð13Þ

where y � ln(Q), and my and sy are the mean and standard
deviation of y, respectively. my and sy can be calculated
from:

my ¼ ln
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C2
Q

q
0
B@

1
CA ð14Þ

s2y ¼ ln 1þ C2
Q

� �
ð15Þ

where Q and CQ are the mean and coefficient of variation
(the standard deviation divided by the mean) of the
discharge during storms, respectively. A larger value for
sy (or CQ) leads to a larger skewness of the distribution and
a longer tail on the PDF of discharge, which emphasizes the
importance of extreme events in fluvial processes. It should
be noted that other distributions have been proposed for
discharge. Lague et al. [2005] used a distribution of
discharge characterized by a power law tail instead of the
exponential tail to investigate the effects of discharge
variability on river profiles. Recently, Molnar et al. [2006]
observed that the frequency of extreme discharges obeys a
distribution with a power law tail for numerous gages across
the US.
[11] We first use the exponential distribution to calculate

the GEE for a single fluvial process that conforms to the
stream power model (either fluvial detachment or sediment
transport capacity). Recall that the geomorphic effectiveness
of a given discharge Q is the product EfQ(Q), which for the
stream power model and exponential distribution is

EfQ Qð Þ ¼ bSn

Q
Qm � Qm

c

� �
exp �Q

Q

� �
: ð16Þ

Taking the derivative of EfQ(Q) with respect to Q and
setting it equal to zero leads to the implicit expression for
the GEE (Qp):

Qm
p � mQQm�1

p � Qm
c ¼ 0 ð17Þ

where this solution requires Qp > Qc. For the simple case
where Qc = 0, Qp has the simplified and explicit form:

Qp ¼ mQ ð18Þ

which implies that, even when a threshold is absent, the most
important discharge is not the mean discharge if the model is
nonlinear. It also implies that variability in the discharge has
a first-order effect on the rate of the fluvial process, meaning
that the mean rate of the fluvial process depends on the
variability of the discharge. This tendency becomes clearer if

the lognormal distribution is used to describe discharge. In
this case, the geomorphic effectiveness EfQ(Q) is

EfQ Qð Þ ¼ bSnffiffiffiffiffiffi
2p

p
sy

Qm�1 � Qm
c Q

�1
� �

exp � 1

2

ln Qð Þ � my
sy

� �2
" #

:

ð19Þ

Again, taking the derivative of this expression with respect
to Q and setting it equal to zero leads to the implicit
expression for the GEE:

ln Qp

� �
� my

s2y
¼ m� 1þ mQm

c

Qm
p � Qm

c

ð20Þ

where this solution applies for Qp > Qc. If Qc = 0, Qp has the
explicit form:

Qp ¼ Q 	 C2
Q þ 1

� �m�3=2
: ð21Þ

The first term on the right side of this equation is the mean of
discharge for the lognormal distribution (see equation (14))
and the second term indicates that the GEE increases with
increasing discharge variability CQ [Nash, 1994; Vogel et
al., 2003]. Equation (18) for the exponential distribution
does not have a term explicitly related to the variance
because there is only one parameter for the exponential
distribution (the mean). It is interesting to note that none of
the expressions for the GEE include the erodability co-
efficient b or the slope exponent n. However, equations (17)
and (20) do show that Qp depends upon m and Qc.
[12] To understand the impacts of the exponent m and

critical discharge Qc on the GEE, we consider a hypothetical
location that drains a relatively small area in a humid
climate. The mean precipitation rate during storms was
found from Hawk [1992] and actually applies to Allentown,
Pennsylvania (P = 1.43 mm/hr), and the drainage area A is
arbitrarily selected to be 1 km2. Thus the mean discharge
during a storm would be Q = PA = 0.397 m3/s. For the
lognormal distribution, three arbitrary values were assigned
for sy: 0.8, 1.0, and 1.2, which correspond to CQ = 0.95,
1.32, and 1.80, respectively. For comparison sy implied by
the exponential distribution and Hawk [1992] is 0.83. Hawk
[1992] also gives the mean storm duration and interstorm
period for Allentown (Tr = 5.42 hrs and To = 61 hrs). Using
the exponential distributions for storm durations and inter-
storm periods as well as either the exponential distribution
or lognormal distribution of discharges during the events,
we simulated a discharge record for 1000 years and
obtained estimates for the 1-year, 2-year, 5-year, and
10-year events using the Weibull plotting position formula
[Chow et al., 1988]. These estimates depend on the
values of Tr and To and thus are specific to the
geographical location. The discharges are expressed as
dimensionless quantities by normalizing by the mean
discharge during storm events (q = Q/Q) and are tabu-
lated in Table 1 for reference.
[13] Figure 1 shows the behavior of the GEE as the

exponent m and the critical discharge Qc are varied.
These results were obtained by solving equations (17)
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and (20) numerically. In all figures, the GEE Qp and the
critical discharge Qc are expressed as dimensionless
quantities qp and qc, respectively (qp � Qp/Q and qc �
Qc/Q). Figure 1a shows the GEE for the exponential
distribution. When the threshold is absent (qc = 0), the
GEE increases linearly with increasing m, which is
implied by equation (18). When the threshold is large
(qc 
 5), the GEE is almost independent of m and tends
toward qp = 1 + qc (i.e., Qp = Q + Qc), which indicates
that the behavior of fluvial processes after the threshold is
exceeded does not affect the GEE. If a 1-year event is

empirically determined to be this location’s GEE, for
example, this return period constrains the value of the
threshold but tells us little about the value of m. Figures 1b–
1d show the GEE for the lognormal distribution with sy = 0.8,
1.0, and 1.2, respectively. In contrast with the results from the
exponential distribution, the GEE increases nonlinearly with
increasing m when the threshold is absent (which confirms
equation (21)). When a threshold is included, the GEE
depends primarily on the value of the threshold when m is
small (0 <m < 2). When m is large (m > 3), the GEE depends
primarily on the value of m and is insensitive to the presence
of the threshold. Comparing Figures 1b–1d, we see that a
larger value ofsy produces a largerGEEvalue for any givenm
and qc. A larger value of sy also produces a more abrupt
transition between GEEs controlled by qc and GEEs con-
trolled by m. It has been previously assumed by many
researchers that bedrock detachment is described by a stream
power model with an exponent of m = 1/3 and a
threshold qc = 0. If discharge during storm events also
conforms to either the exponential or lognormal distribu-
tions considered here, then Figure 1 shows that the GEE
has a return period of much less than one year, which is
unlikely. In fact, Tucker [2004] also argued that the linear
stream power model without a threshold is too simplistic
for most cases of channel incision.

Figure 1. Impacts of exponent on discharge m and dimensionless critical discharge qc on the
dimensionless GEE qp for (a) the exponential distribution and three lognormal distributions with the
standard deviation (b) sy = 0.8, (c) sy = 1.0, and (d) sy = 1.2. The short horizontal lines denote
the dimensionless discharges associated with different return periods, which are calculated from the
climate parameters of Allentown, Pennsylvania.

Table 1. Dimensionless Discharges q Associated With Different

Return Periods for the Exponential and Lognormal Distributions of

Discharge During Storm Eventsa

Return
Period

Dimensionless Discharge

Exponential
Distribution

Lognormal Distribution

sy = 0.8 sy = 1.0 sy = 1.2

1 year 2.7 2.6 3.0 3.5
2 years 5.2 5.7 8.0 10.4
5 years 6.3 7.7 12.0 16.4
10 years 7.1 9.2 14.8 21.6

aThese estimates are specific to climate parameters from Allentown,
Pennsylvania.
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2.2. Effectiveness of the GEE

[14] By definition the GEE represents the discharge that
makes the most important contribution to the fluvial pro-
cesses over long periods. However, it is not clear whether
the GEE can be used in place of the PDF of discharge
and obtain the same average erosion rate. This question is
important for both numerical modeling of landscape
evolution and the use of the stream power model in
interpreting field data. For example, if one uses a single
effective discharge in a landscape evolution model instead
of explicitly accounting for the variability of discharge, is
the GEE the correct choice for the effective discharge?
Similarly, if an effective discharge is inferred for a field
site using the stream power model without explicit
consideration of the variability of discharge, is that
effective discharge the GEE?
[15] To resolve this issue, the average erosion rate is

calculated when either the exponential or lognormal PDF of
discharge is used to determine the individual erosion rates
and when the GEE alone is used to determine the erosion
rates. When the full PDF is used, a discharge Q is first
generated from the appropriate fQ(Q). If Q > Qc, then the
erosion rate is calculated as E = g(Q), otherwise no erosion
occurs. When the GEE is used in place of the distribution, a
discharge Q is still generated from fQ(Q). If Q > Qc, then the
erosion rate is calculated as E = g(Qp), otherwise no erosion

occurs. By using this method, the number of storms
producing erosion is the same in both methods. If Qp is
used for every storm event including those below the
threshold, then the GEE significantly overestimates the
erosion whenever Qc > 0. The performance of the GEE
can then be evaluated by calculating the ratio of the two
average erosion rates B:

B ¼

Z 1

Qc

g Qp

� �
fQ Qð ÞdQZ 1

Qc

g Qð ÞfQ Qð ÞdQ
ð22Þ

where the numerator describes the average erosion rate
produced by the GEE and the dominator describes the
average erosion rate produced by the full PDF. If B = 1, then
the GEE generates the same average erosion rate as the
discharges generated from the selected distribution. If B > 1,
then using the GEE instead of the distribution overestimates
the average erosion rate.
[16] For the exponential distribution, equation (22) can be

evaluated analytically:

B ¼
Qm

p � Qm
c

� �
	 exp �Qc=Q

� �
Q

m
G mþ 1;Qc=Q
� �

� Qm
c 	 exp �Qc=Q

� � ð23Þ

Figure 2. Impacts of m and qc on the ability of the GEE to reproduce the average erosion rate produced
by (a) an exponential distribution and three lognormal distributions with (b) sy = 0.8, (c) sy = 1.0,
and (d) sy = 1.2. B is the ratio of the average erosion rate produced by the GEE to that produced by
the distribution of discharges.
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where G(	,	) is the incomplete gamma function. Similarly,
for the lognormal distribution, one can calculate

B ¼
Qm

p � Qm
c

� �
	 erfc sc=

ffiffiffi
2

p� �
exp mmy þ 0:5m2s2y

� �
	 erfc tc=

ffiffiffi
2

p� �
� Qm

c 	 erfc sc=
ffiffiffi
2

p� �
ð24Þ

where erfc(	) is the complementary error function, sc �
(ln(Qc) � my)/sy, and tc � [ln(Qc) � my � msy

2]/sy.
[17] Figure 2a shows the behavior of equation (23) for the

exponential distribution, and Figures 2b–2d show the
behavior of equation (24) for the lognormal distribution
with different variances. For the exponential distribution,
the GEE is a suitable effective discharge when m � 1 or
m � 0. Otherwise, the GEE underestimates the average
erosion rate when m < 1, and it overestimates the average
erosion rate when m > 1. As the threshold becomes large,
however, the erosion rate produced by the GEE is increas-
ingly similar to the erosion rate from the PDF of discharge.
In Figures 2b–2d, the GEE usually underestimates the
erosion rate when m < 2 and overestimates the erosion rate
when m > 2. Also, the GEE is generally a poorer represen-
tation as the standard deviation of discharge increases.
These results demonstrate that while the GEE is the most
effective discharge in shaping the fluvial landscape, it is

usually not an appropriate substitution for the PDF of
discharge.
[18] The appropriate effective discharge can be calculated

analytically by setting B = 1 and solving for the effective
discharge (labeled Qp in equations (23) and (24)). If we call
the correct effective discharge Qe, then for the exponential
distribution:

Qe ¼
G mþ 1;Qc=Q
� �
exp �Qc=Q

� �
" #1=m

Q ð25Þ

and for the lognormal distribution:

Qe ¼
erfc tc=

ffiffiffi
2

p� �
erfc sc=

ffiffiffi
2

p� �
" #1=m

exp my þ 0:5ms2y
� �

: ð26Þ

Figure 3 shows the nondimensional effective discharge
(qe � Qe/Q) as a function of m and qc for the exponential
and lognormal distributions. Comparing Figures 1 and 3, we
can see that qe is much different from the GEE in most
cases. Most notably, qe is usually less sensitive to the value
of m than qp. The difference between qe and qp is an im-
portant result because it implies that the effective discharge
inferred from field data with a stream power model that
does not consider variability is not equivalent to the GEE. In

Figure 3. Impacts of m and qc on the dimensionless effective discharge (qe � Qe/Q) for (a) the
exponential distribution and three lognormal distributions with (b) sy = 0.8, (c) sy = 1.0, and (d) sy = 1.2.
The short horizontal lines denote the dimensionless discharges associated with different return periods,
which are calculated from the climate parameters of Allentown, Pennsylvania.

F03015 HUANG AND NIEMANN: GEOMORPHICALLY EFFECTIVE EVENT

7 of 17

F03015



addition, it implies that the appropriate effective discharge
for numerical modeling is also not the GEE. However, the
result does not suggest that the GEE is unimportant. In fact,
the GEE still correctly identifies the most important
discharge to the fluvial processes. Figure 3 also implies
that the average erosion rate increases with increasing
discharge variability when the critical discharge is large
(e.g., qc = 5), which is consistent with the results of Molnar
et al. [2006]. They found that a climate change toward
greater aridity leads to larger discharge variability and faster
channel incision if the incision is driven by rare large floods.

2.3. Comparison of Bedrock Detachment and
Sediment Transport GEEs

[19] On the basis of sections 2.1 and 2.2, we expect
that different fluvial processes may have different GEEs
because each fluvial process likely has its own exponent
m and Qc. In this section, we evaluate the likelihood that
bedrock detachment and sediment transport capacity have
the same GEE. We investigate this issue in two ways.
First, we assume that the exponent m of one fluvial
process and the threshold qc for the other fluvial process
are unknown. If the GEE is the same for both fluvial
processes, the unknown threshold qc can be calculated for
any given value of m and qp by using equations (17) and
(20). Figure 4 shows that qc decreases with increasing m
for any given GEE for both the exponential and lognor-
mal distributions. Interestingly, the range of possible m
values is limited by the GEE for the two processes if
known.

[20] Alternatively, we could assume that the exponent
m is known for both fluvial processes but that the
thresholds are not known. A relatively small exponent
m = 1/3 is used for the bedrock detachment model
[Howard, 1994; Tucker and Slingerland, 1997; Hancock
et al., 1998] and a relatively large exponent m = 1.5 is
used to calculate sediment transport capacity [Howard,
1994]. Given these exponents, the dimensionless critical
discharges qc for bedrock detachment and sediment trans-
port capacity are calculated so that the same GEE is
produced for both processes. Figure 5 illustrates that the
threshold for the bedrock detachment model is larger than
the threshold for the sediment transport model. However,
Figure 5 also shows that the two threshold values are
quite similar for all GEEs, which conflicts with the
expectation that the threshold for bedrock detachment is
much larger than the threshold for sediment transport. If
thresholds are different for bedrock detachment and
sediment transport, it is expected that these two processes
respond to different discharges.

3. Analysis With a 1-D Numerical Model

3.1. Model Description

[21] In order to consider the GEE for additional circum-
stances, a one-dimensional geomorphic model is used to
numerically simulate the evolution of a hillslope and chan-
nel profile. The hydrologic aspects of this model are nearly
identical to those described earlier. Precipitation intensity is
simulated according to the exponential distribution in sec-

Figure 4. Relationship between m for one fluvial process
and qc for another fluvial process under the condition that
the two processes have the same GEE when (a) the
exponential distribution is used for discharges and (b) the
lognormal distribution with sy = 0.8 is used.

Figure 5. The dimensionless critical discharge for bedrock
detachment and sediment transport as a function of the
dimensionless GEE if the discharge distribution follows
(a) the exponential distribution and (b) the lognormal
distribution with sy = 0.8.
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tion 2.1 (equation (9)), and the storm durations and inter-
storm periods also are simulated using exponential distri-
butions. To calculate the discharge at any point i along the
profile, it is assumed that

Ai ¼ L2i ð27Þ

where Li is the distance of the location from the divide. This
expression assumes the profile occurs in a self-similar
watershed [Mandelbrot, 1983; Veneziano and Niemann,
2000; Hack, 1957], and it neglects the effects of channel
sinuosity and the discrete occurrences of channel junctions
[Tucker and Slingerland, 1994; Veneziano and Niemann,
2000]. Therefore the water discharge Qi during a storm can
be written as

Qi ¼ PAi ¼ PL2i ð28Þ

where P is a rainfall rate generated according to the
exponential distribution.
[22] Two distinct models are used to simulate the evolu-

tion of the profile. The first includes the so-called detach-
ment-limited expression for erosion [i.e., Moglen and Bras,
1995]. The governing equation for the detachment-limited
model is

@z

@t
¼ U þ kd

@2z

@x2
� bQmSn � Fð Þ ð29Þ

where z is elevation, t is time, U is the rate of base level fall,
kd is a diffusivity parameter, and x is the horizontal
coordinate. The first term on the right side describes both
tectonic uplift and base level fall as being constant in time
and uniform in space, and it acts to raise the profile relative
to the outlet, which is held fixed. The second term

represents diffusive hillslope processes including rain splash
and soil creep. The third term describes fluvial detachment.
Because this term depends on the discharge, it occurs
intermittently. This model assumes that detached material is
immediately removed from the basin and is not deposited at
downstream points. This model is perhaps the simplest one
with an erosion threshold that will produce a profile with
both hillslope and valley portions.
[23] The second model we consider is the transport-

limited model. This model includes base level fall and
hillslope processes as before, but it also assumes that fluvial
processes can readily detach material so that the transport
capacity of the flow limits the fluvial erosion. The govern-
ing equation for this model is

@z

@x
¼ U þ kd

@2z

@x2
�r 	 Qs ð30Þ

where r 	 denotes the spatial divergence and Qs denotes the
sediment transport rate. In this model, the stream power
expression is assumed to apply to the sediment transport
capacity. Because the model assumes transport-limited
conditions, the actual sediment transport rate is always
equal to the sediment transport capacity. Thus

Qs ¼ bQmSn � F: ð31Þ

[24] Three simulations were run for both the detachment-
limited and the transport-limited models using different
thresholds. The initial river profile has an extremely slight
slope toward the outlet to define the direction of flow, and
the distance from the divide to the outlet is arbitrarily set to
2 km. Water and sediment leave the system only through the
outlet. The profiles are allowed to evolve from the initial
state to a steady state where the denudation processes
balance the rate of base level fall. The diffusivity kd is

Table 2. Parameters Used in the 1-D Hillslope and Valley Profile Model

Parameter Value

Domain
Domain size 50
Grid cell size 40 m

Rainfall Model
Mean rainfall intensity P 1.43 mm/hr
Mean rainfall duration Tr 5.42 hrs
Mean interstorm duration To 61 hrs

Detachment-Limited Model
Base level fall rate U 0.001 m/yr
Coefficient of bedrock detachment b 0.0015 yr�2/3

Exponent m 1/3
Exponent n 2/3
Threshold for detachment F 0.0 m/yr, 0.012 m/yr, 0.045 m/yr
Diffusivity kd 6 m2/yr, 4 m2/yr, 2 m2/yr

Transport-Limited Model
Base level fall rate U 0.001 m/yr
Coefficient of sediment transport b 0.0005 m�1.5yr0.5

Exponent m 1.5
Exponent n 2.0
Threshold for transport F 0.0 m3/yr, 5  104 m3/yr, 2  105 m3/yr
Diffusivity kd 20 m2/yr, 6 m2/yr, 3 m2/yr
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varied for each simulation to ensure that all steady state
profiles have approximately the same hillslope size. The
threshold values (F) are 0.0, 0.012, and 0.045 m/yr for
the detachment-limited simulations and 0.0, 5  104, and
2  105 m3/yr for the transport-limited simulations. Other
parameters for the simulations are given in Table 2.

3.2. GEE of a Subdominant Fluvial Process

[25] Figure 6 shows how the threshold for bedrock
detachment affects the steady state profile and the dimen-
sionless GEE. The dimensionless GEE at each location is
calculated using the location’s contributing area and slope
and equation (17). In Figure 6a, the steady state river profile
increases in elevation with an increasing threshold value
because a larger threshold requires larger slopes for the
fluvial erosion to balance the base level fall. Figure 6b
shows that the downstream portion of the profile has a

constant dimensionless GEE along its length, which also
implies a constant return period for the GEE in this
segment. This portion of the profile roughly corresponds
to the concave portion in Figure 6a, and Figure 6c shows
that fluvial detachment is the dominant geomorphic process
for this segment. The constant GEE in the fluvial section
results from the fact that the dimensionless critical discharge
qc is constant. In particular,

qc ¼
Qc

Q
¼ F= bSnð Þ½ �1=m

PA
¼ F

bPm
AmSn

� �1=m

¼ const ð32Þ

where the term AmSn is constant along the steady state
detachment-limited river profile [Howard, 1994; Willgoose,
1994]. On the basis of Figure 1, the GEE is determined from
only the dimensionless critical discharge qc and the
exponent m, which is also constant. Figure 6b also shows

Figure 6. (a) Combined hillslope and valley profiles generated by the detachment-limited model with
three different thresholds, (b) the dimensionless GEE along these profiles, and (c) the contribution of
fluvial detachment to the total denudation. The short horizontal line in Figure 6b denotes the
dimensionless discharge associated with a 1 year event.
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that the GEE diverges from the constant value on the
hillslope when a threshold is present in the detachment-
limited model. In this portion of the profile, the diffusive
process is dominant, but the fluvial process still occurs. The
GEE in the hillslope portion is the discharge that contributes
the most to the long-term fluvial incision. Interestingly, the
most effective discharges on the hillslope are more
infrequent than the most effective discharges in the valley.
Figure 6b shows that the dimensionless GEE on the
hillslope reaches twice the value in the valley when the
fluvial process contributes about 20% of the total denuda-
tion. Thus the fluvial process is of secondary importance but
not trivial when the GEE begins to diverge substantially
from the GEE in the channel.

3.3. Spatial Variations of the GEE at Equilibrium

[26] Figure 7 shows how the threshold for sediment
transport affects the steady state profile and the dimension-
less GEE along the profile. The dimensionless GEE is
calculated according to equation (17). As expected, the
steady state profile increases in elevation with an increasing
threshold value in Figure 7a. In Figure 7b, the lowest
transport-limited profile has a constant dimensionless GEE
because the threshold is zero. However, the upper two
profiles have a decreasing dimensionless GEE as one
moves downstream, which suggests that different points
on the profile have GEEs with different return periods. In
the transport-limited steady state condition, each point in
the domain is responsible for removing the sediment

produced locally as well as the sediment produced
upstream. Thus the geomorphic system evolves such that
local slope increases upstream more gently than it does
for the detachment-limited condition. In other words, for
a given values of m and n, the transport-limited model
produces a profile with lower concavity than the detachment-
limitedmodel [Howard, 1994;Willgoose, 1994]. The fact that
the GEE varies as one moves downstream can be demon-
strated by considering qc again. For the transport limited
model, one can show that

qc ¼
Qc

Q
¼ F= bSnð Þ½ �1=m

PA
¼ F

bPm
Am�1Sn

� �1=m

A�1=m: ð33Þ

The dependence on contributing area in the final term
indicates that qc varies along the profile. While the mean
discharge Q increases linearly with an increasing contribut-
ing area, the critical discharge Qc increases much slower
with the increasing contributing area. Thus the dimension-
less GEE will vary as well. This result is consistent with
field observations suggesting that the return period of the
GEE for sediment transport decreases as the contributing
area increases [Andrews, 1980]. However, these field
observations did not necessarily consider streams at steady
state.

3.4. GEE During Transient Responses

[27] Knickpoint migration occurs when a geomorphic
system is subjected to a change in external forcing such

Figure 7. (a) Steady state profiles generated by the transport-limited model with three different
thresholds and (b) the dimensionless GEE along these profiles. The short horizontal lines in Figure 7b
denote the dimensionless discharges associated with different return periods.
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as an abrupt change in the rate of base level fall. The
knickpoint is the point on the river profile that separates a
downstream section, which has mostly adjusted to the new
conditions, and an upstream portion, which mostly reflects
the previous conditions. Results from the earlier sections
suggest that the GEE may be different for the upstream and
downstream portions of a stream during such a transient.
[28] The propagation of a knickpoint is simulated using

the 1-D geomorphic models described above. To focus on
the behavior in the valleys, hillslope processes are not
included in either model in this case. The river profile begins
in steady state with a small rate of base level fall (1 mm/yr),
then the rate of base level fall is doubled (2 mm/yr). The GEE
is calculated along the river profile for the transient states
according to equation (17).
[29] Figure 8 demonstrates how the profile and the

dimensionless GEE respond to the increase in the rate of
base level fall for both the detachment-limited and trans-
port-limited conditions. For the detachment-limited condi-
tion, Figure 8a clearly shows the propagation of the
knickpoint, and Figure 8b shows that the dimensionless
GEE has different values along the profile. The qp value
above the knickpoint is equivalent to qp of the initial steady
state profile, while the qp value below the knickpoint is
determined from the final steady state condition. The points
near the knickpoint itself have qp values between the
upstream and downstream values. The transition of the
dimensionless GEE around the knickpoint is also affected

by the slope exponent n in equation (29), which has been
shown to affect the shape of the knickpoint itself [Tucker and
Whipple, 2002]. For the transport-limited case in Figure 8c,
there is no clear knickpoint because the transport-limited
condition makes the river profile respond more uniformly. In
this case, Figure 8d illustrates that the dimensionless GEE
shifts more or less simultaneously from the initial to final
values at all locations along the profile.

4. Analysis With a 2-D Numerical Model

[30] The 1-D geomorphic model described above uses a
simple representation of basin hydrology (i.e., Q = PA),
which implies that streamflow generation occurs uniformly
across the basin and that the temporal variation of discharge
matches the temporal variation of precipitation exactly.
While these approximations are commonly used in land-
scape evolution analysis and modeling, they are both
unlikely to occur for most landscapes [Tucker and Bras,
2000; Tucker, 2004; Huang and Niemann, 2006]. Given the
results in the previous sections, one might expect that a
more detailed description of basin hydrology could produce
further spatial variations of the dimensionless GEE and thus
the return period of the GEE. To consider the role of
streamflow generation processes, a more detailed hydrologic
model is imbedded in a 2-D detachment-limited landscape
evolution model.

Figure 8. (a) Transient river profiles and (b) associated dimensionless GEEs for the detachment-limited
model and (c) transient river profiles and (d) associated dimensionless GEEs for the transport-limited
model. The top and bottom solid curves denote the initial and final steady state river profiles,
respectively. The other three curves denote transient profiles.
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4.1. Model Description

[31] The geomorphic processes included in the model are
the rate of base level fall, denudation by hillslope processes,
and detachment by flowing water. The governing equation
for the geomorphic model is the same as equation (29), but

it is applied to a two-dimensional horizontal grid. Precipi-
tation events occur according to a stochastic process where
the intensity, duration, and interstorm periods are deter-
mined from exponential distributions as described earlier.
However, now a specified infiltration capacity partitions the
precipitation between infiltration excess surface runoff and
infiltration. Infiltrated water contributes to groundwater,
whose movement is simulated using a dynamic depth-
integrated model for a shallow, homogeneous, isotropic,
and unconfined aquifer [Dupuit, 1863]. Groundwater dis-
charge occurs when the water table reaches the surface, and
saturation excess surface runoff occurs where precipitation
falls on locations where the water table is at the surface. For
a more detailed explanation of this model, see Huang and
Niemann [2006] who applied this combined hydrologic/
geomorphic model to the WE-38 experimental watershed
near Allentown, Pennsylvania.
[32] Four simulations were run using the same parameters

except for the infiltration capacity, which was varied to
control the contribution of saturation excess runoff and
groundwater discharge to the basin’s hydrologic and geo-
morphic behavior. The assigned infiltration capacities were
0, 0.3, 1.0, and 2.3 mm/hr, which result in 0%, 20%, 50%,
and 80% of precipitation infiltrating to groundwater, re-
spectively. Other parameters are provided in Table 3. The
simulations began with an essentially flat topography and

Table 3. Parameters Used in the 2-D Detachment-Limited Land-

scape Evolution Model

Parameter Value

Domain
Domain size 50  50
Grid cell size 40 m
Aquifer thickness 2.4 m

Precipitation Model
Mean rainfall intensity P 1.43 mm/hr
Mean rainfall duration Tr 5.42 hrs
Mean interstorm duration To 61 hrs

Geomorphic Model
Base level fall rate U 0.001 m/yr
Hillslope diffusivity kd 0.2 m2/yr
Exponent m 1/3
Exponent n 2/3
Coefficient for detachment b 0.0025 yr�2/3

Threshold for detachment F 0.0125 m/yr

Figure 9. Contour plots of elevation showing the steady state topographies generated by a detachment-
limited model with an infiltration capacity of (a) 0 mm/hr, (b) 0.3 mm/hr, (c) 1.0 mm/hr, and (d) 2.3 mm/hr.
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progressed to steady state, which is the condition that is
analyzed.
[33] For these simulations, the GEE must be calculated in

a different manner than in sections 2 and 3 because both the
mean discharge and the distribution of discharge are
expected to vary in space. Therefore the GEE was deter-
mined from Monte Carlo simulations. After reaching steady
state, the model was run for a period of 1000 years, which
represents a sample from the probability distribution of
discharges. The average detachment rate during every storm
and the following interstorm period was calculated at all
locations in the watershed. Then, the total erosion produced
by discharges within small specified intervals was calculated.
The total erosion for each range of discharge indicates the
contribution of that range to the total erosion at the location.
The GEE can be identified from the discharge range that has
the greatest contribution to the total erosion. This method to
determine the GEE is very similar to the one typically used in
the field [e.g., Andrews, 1980].

4.2. GEE With Spatially Variable Runoff Production

[34] Figure 9 shows the steady state topographies gener-
ated by the 2-D geomorphic model when different infiltra-
tion capacities are used. As the infiltration capacity
increases, the basin relief increases and a more abrupt
transition between the hillslopes and valleys is observed.
When the infiltration capacity is large (>2.3 mm/hr), the
fluvial erosion is focused in the valleys and not on the

hillslopes, which produces steep valley sidewalls. This
behavior occurs because the water table remains below
the land surface of the hillslopes during most rainfall events,
so little overland flow is available for detachment at these
locations. In contrast, the valleys have continuous flows
from groundwater discharge and the surface runoff from
storm events, which allows continual detachment. Figure 10
shows the slope-area relationships for these topographies.
When the infiltration capacity is zero, the slope-area rela-
tionship in the valleys is a straight line in the log-log
coordinate system. As the infiltration capacity increases,
the slope has a more irregular relationship with contributing
area.When the infiltration capacity is large (e.g., Figure 10d),
the slopes are separated into two distinct groups. The upper
group corresponds to hillslope locations, which have larger
slopes, and the lower group corresponds to valley locations,
which have smaller slopes. A similar behavior was observed
by Tucker and Bras [1998] using the wetness index
[Beven and Kirkby, 1979] to simulate saturation excess
runoff production.
[35] Figure 11 shows the dimensionless GEE as a func-

tion of contributing area for steady state topographies. In
Figure 11a, the infiltration capacity is zero, so the results
simply confirm that the 1-D results in Figure 6b also apply
to a 2-D landscape. As expected, the dimensionless GEE is
constant for the valleys and increases for the hillslopes. As
the infiltration capacity increases in Figures 11b–11d, the
pattern of streamflow generation becomes nonuniform, so

Figure 10. Slope-area relationships for the steady state topographies generated with infiltration
capacities of (a) 0 mm/hr, (b) 0.3 mm/hr, (c) 1.0 mm/hr, and (d) 2.3 mm/hr. The percentage given in each
plot indicates the portion of the precipitation that infiltrates to the groundwater.
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the dimensionless GEE becomes more variable in the
watershed. Figure 11c exhibits four distinct types of loca-
tions. When A is less than 4  103 m2, qp tends to be very
large. These locations correspond to hillslope locations that
are dominated by diffusive processes. Here, the GEE is
similar to the GEE for the hillslopes in Figures 6b and 11a.
When A ranges from 4  103 m2 to 4  104 m2, numerous
points have a dimensionless GEE at about 2.5. These points
correspond to ephemeral channels whose discharge is dom-
inated by infiltration excess runoff. qp is large for these
points because they tend to be groundwater recharge loca-
tions. Thus the infiltration capacity is similar to a threshold
that must be exceeded before overland flow and detachment
can occur. A third group of points with A between 1 104 m2

and 2  105 m2 has variable values of qp that tend to fall
below 2.5. The GEE at these locations is lower than the
GEE for other points with similar contributing area
because these tend to be groundwater discharge locations.
When A > 2  105 m2, qp is constant at a value slightly
above one. These points correspond to the perennial
channels, which mainly convey discharge from locations
upstream. The four zones identified in Figure 11c are
more distinct with larger infiltration capacities mainly
because the dimensionless GEE of the infiltration excess
ephemeral channels tends to increase with increasing
infiltration capacity. The dimensionless GEE in the perennial
channels also increases with an increasing infiltration capac-

ity because discharges tend to be more distributed in time due
to the slow release of groundwater.

5. Discussion and Conclusions

[36] The objective of this paper was to investigate the
behavior of the GEE when a stream power model with a
threshold is used to describe the detachment of bedrock and
the transport of sediment. The main conclusions and their
implications are listed below.
[37] 1. When either bedrock detachment or sediment

transport is described by a stream power model, both the
threshold and the exponent on discharge m can have
significant impacts on the GEE. When m < 2, the magnitude
of the GEE mainly depends on the threshold, and when
m > 2, the GEE mainly depends on the exponent. The
mean discharge is the GEE only when the stream power
model has a linear dependence on discharge and a
threshold of zero. Given that the available estimates of
m for bedrock detachment and sediment transport are
consistently at or below two [Howard, 1994; Tucker and
Slingerland, 1997; Hancock et al., 1998], it is most probable
that the threshold controls the return period of the GEE.
[38] 2. The single ‘‘effective’’ discharge that produces the

same average erosion rate as the PDF of discharge is usually
not the GEE. Among the cases considered, the GEE is only
an adequate approximation when the distribution of dis-

Figure 11. Variation of the dimensionless GEE with contributing area for the steady state topographies
generated with infiltration capacities of (a) 0 mm/hr, (b) 0.3 mm/hr, (c) 1.0 mm/hr, and (d) 2.3 mm/hr. The
percentage given in each plot indicates the portion of the precipitation that infiltrates to the groundwater.

F03015 HUANG AND NIEMANN: GEOMORPHICALLY EFFECTIVE EVENT

15 of 17

F03015



charge is exponential and m � 0, m � 1, or the threshold is
large. This result suggests that models describing the long-
term effects of bedrock detachment and sediment transport
capacity cannot be driven by the GEE alone. This result also
has implications for the analysis of field data. In particular,
if one derives an effective discharge using a stream power
model that does not consider variability of discharge, then
this effective discharge is not the GEE.
[39] 3. For a steady state profile, the return period of the

GEE is larger on the hillslope where a diffusive process is
dominant than it is in the valley where the fluvial process is
dominant if a threshold is present. This result implies that
the GEE can be different between different locations in a
basin depending on whether the water-driven erosion pro-
cess is the dominant process. It also suggests that estimates
of the GEE from channel locations cannot be used as
estimates of the GEE in hillslope locations.
[40] 4. Steady state river profiles generated by the de-

tachment-limited model exhibit a constant GEE throughout
the channels, but the steady state topography generated by
the transport-limited model shows a decreasing dimension-
less GEE with increasing contributing area. This result
implies that the return period of the GEE upstream is greater
than the return period of the GEE downstream. It also
suggests that if the random discharges increase linearly with
drainage area, then the GEE does not usually increase
linearly with drainage area.
[41] 5. When a detachment-limited profile is responding

to a change in the rate of base level fall, different dimen-
sionless GEE values are observed upstream and down-
stream of the knickpoint. For a transport-limited profile,
the dimensionless GEE is updated more or less simulta-
neously throughout the profile. This behavior is important
because it suggests that the most important discharge for
points in steady state conditions can be different than the
most important discharge for points in transient conditions.
[42] 6. Spatial variation in the generation of streamflow

also affects the magnitude of the dimensionless GEE in a
steady state basin. When saturation excess runoff and
groundwater discharge become more important due to a
larger specified infiltration capacity, the dimensionless GEE
tends to increase for groundwater recharge locations and
increase slightly for groundwater discharge locations. Thus
nonuniform runoff production mechanisms can produce
further spatial variations in the return period of the GEE.
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